
Internal Assessment Test 2 – November 2020

1a. List out & explain four essential elements of design pattern with small talk MVC

example.

Ans.

• Christopher Alexander says, "Each pattern describes a problem which occurs over and

over again in our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over, without

ever doing it the same way twice".

• Four essential elements of a pattern::

1. The pattern name is a handle we can use to describe a design problem, its solutions,

and consequences in a word or two.

2. The problem describes when to apply the pattern.

3. The solution describes the elements that make up the design, their relationships,

responsibilities, and collaborations

4. The consequences are the results and trade-offs of applying the pattern.

• The design patterns are descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context.

Design Patterns in Smalltalk MVC

• Model is the application object

• View is the model's screen presentation

• Controller defines the way the user interface reacts to user input.

• MVC decouples views and models by establishing a subscribe/notify protocol

between them.

Sub: Software Architecture & Design Patterns Sub Code: 17IS72

• The design is applicable to a more general problem: decoupling objects so that

changes to one can affect any number of others without requiring the changed object

to know details of the others. (Observer design pattern)

• MVC supports nested views with the CompositeView class, a subclass of View.

(Composite design pattern).

• MVC also lets you change the way a view responds to user input without changing its

visual presentation by encapsulating the response mechanism in a Controller

object. (Strategy design pattern)

• MVC uses Factory Method design pattern to specify the default controller class for a

view and Decorator design pattern to add scrolling to a view.

1b. List out the templates used in describing design pattern.

Ans.

• Pattern Name and Classification

• Intent: What does the design pattern do? What is its rationale and intent? What

particular design issue or problem does it address?

• Also Known As

• Motivation: A scenario that illustrates a design problem and how the class and object

structures in the pattern solve the problem.

• Applicability: What are the situations in which the design pattern can be applied?

• Structure: A graphical representation of the classes in the pattern using a notation

based on OMT or UML.

• Participants: The classes and/or objects participating in the design pattern and their

responsibilities.

• Collaborations: How the participants collaborate to carry out their responsibilities.

• Consequences: How does the pattern support its objectives? What are the trade-offs

and results of using the pattern?

• Implementation: What should you be aware of when implementing the pattern? Are

there language-specific issues?

• Sample Code: Code fragments that illustrate how you might implement the pattern in

particular object-oriented programming languages.

• Known Uses: Examples of the pattern found in real systems.

• Related Patterns

The Catalog of Design Patterns:

• Abstract Factory provides an interface for creating families of related or dependent

objects without specifying their concrete classes.

• Adapter converts the interface of a class into another interface clients expect. Adapter

lets classes work together that couldn't otherwise because of incompatible interfaces.

• Bridge decouples an abstraction from its implementation so that the two can vary

independently.

• Builder separates the construction of a complex object from its representation so that

the same construction process can create different representations.

• Chain of Responsibility avoids coupling the sender of a request to its receiver by

giving more than one object a chance to handle the request. Chain the receiving

objects and pass the request along the chain until an object handles it.

• Command encapsulates a request as an object, thereby letting you parameterize clients

with different requests, queue or log requests, and support undoable operations.

• Composite composes objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and compositions of objects uniformly.

• Decorator attaches additional responsibilities to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending functionality.

• Facade provides a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use.

• Factory Method defines an interface for creating an object, but let subclasses decide

which class to instantiate. Factory Method lets a class defer instantiation to

subclasses.

• Flyweight uses sharing to support large numbers of fine-grained objects efficiently.

• Interpreter,given a language, defines a represention for its grammar along with an

interpreter that uses the representation to interpret sentences in the

language.Iterator provides a way to access the elements of an aggregate object

sequentially without exposing its underlying representation.

• Mediator defines an object that encapsulates how a set of objects interact.

• Memento, without violating encapsulation, captures and externalizes an object's

internal state so that the object can be restored to this state later.

• Observer defines a one-to-many dependency between objects so that when one object

changes state, all its dependents are notified and updated automatically.

• Prototype specifies the kinds of objects to create using a prototypical instance, and

create new objects by copying this prototype.

• Proxy provides a surrogate or placeholder for another object to control access to it.

• Singleton ensures a class only has one instance, and provide a global point of access

to it.

• State allows an object to alter its behavior when its internal state changes. The object

will appear to change its class.

• Strategy defines a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients that use

it.

• Template Method defines the skeleton of an algorithm in an operation, deferring some

steps to subclasses. Template Method lets subclasses redefine certain steps of an

algorithm without changing the algorithm's structure.

• Visitor represents an operation to be performed on the elements of an object structure.

Visitor lets you define a new operation without changing the classes of the elements

on which it operates.

1c. Name any four design patterns available in catalog of design pattern

Ans.

2a. Name the several approaches to find the design pattern that’s rights for your problem.

Ans.

2b. Define object-oriented development. Name the various key concepts of OOD.

Ans.

An object-oriented system is made up of interacting objects that maintain their own local

state and provide operations on that state. There is a general acceptance that an object is an

encapsulation of information. The representation of the state is private and cannot be

accessed directly from outside the object.

Object-oriented programming has four basic concepts: encapsulation, abstraction, inheritance

and polymorphism. Even if these concepts seem incredibly complex, understanding the

general framework of how they work will help you understand the basics of a computer

program. Here are the four basic theories and what they entail:

• Encapsulation

• Abstraction

• Inheritance

• Polymorphism

Encapsulation

The different objects inside of each program will try to communicate with each other

automatically. If a programmer wants to stop objects from interacting with each other, they

need to be encapsulated in individual classes. Through the process of encapsulation, classes

cannot change or interact with the specific variables and functions of an object.

Just like a pill "encapsulates" or contains the medication inside of its coating, the principle of

encapsulation works in a digital way to form a protective barrier around the information that

separates it from the rest of the code. Programmers can replicate this object throughout

different parts of the program or other programs.

Abstraction

Abstraction is like an extension of encapsulation because it hides certain properties and

methods from the outside code to make the interface of the objects simpler. Programmers use

abstraction for several beneficial reasons. Overall, abstraction helps isolate the impact of

changes made to the code so that if something goes wrong, the change will only affect the

variables shown and not the outside code.

Inheritance

Using this concept, programmers can extend the functionality of the code's existing classes to

eliminate repetitive code. For instance, elements of HTML code that include a text box, select

field and checkbox have certain properties in common with specific methods.

Instead of redefining the properties and methods for every type of HTML element, you can

define them once in a generic object. Naming that object something like "HTMLElement"

will cause other objects to inherit its properties and methods so you can reduce unnecessary

code.

The main object is the superclass and all objects that follow it are subclasses. Subclasses can

have separate elements while adding what they need from the superclass.

Polymorphism

This technique meaning "many forms or shapes" allows programmers to render multiple

HTML elements depending on the type of object. This concept allows programmers to

redefine the way something works by changing how it is done or by changing the parts in

which it is done. Terms of polymorphism are called overriding and overloading.

2c. Explain the benefits & drawback of the paradigm in OOD.

Ans.

Object-oriented programming is a well-adopted programming style that uses interacting

objects to model and solve complex programming tasks. Two examples of popular object-

oriented programming languages are Java and C++. Some other well-known object-oriented

programming languages include Objective C, Perl, Python, Javascript, Simula, Modula, Ada,

Smalltalk, and the Common Lisp Object Standard.

Some of the advantages of object-oriented programming include:

1. Improved software-development productivity: Object-oriented programming is

modular, as it provides separation of duties in object-based program development. It

is also extensible, as objects can be extended to include new attributes and behaviors.

Objects can also be reused within an across applications. Because of these three

factors – modularity, extensibility, and reusability – object-oriented programming

provides improved software-development productivity over traditional procedure-

based programming techniques.

2. Improved software maintainability: For the reasons mentioned above, objectoriented

software is also easier to maintain. Since the design is modular, part of the system can

be updated in case of issues without a need to make large-scale changes.

3. Faster development: Reuse enables faster development. Object-oriented programming

languages come with rich libraries of objects, and code developed during projects is

also reusable in future projects.

4. Lower cost of development: The reuse of software also lowers the cost of

development. Typically, more effort is put into the object-oriented analysis and

design, which lowers the overall cost of development.

5. Higher-quality software: Faster development of software and lower cost of

development allows more time and resources to be used in the verification of the

software. Although quality is dependent upon the experience of the teams, object-

oriented programming tends to result in higher-quality software.

Some of the disadvantages of object-oriented programming include:

1. Steep learning curve: The thought process involved in object-oriented programming

may not be natural for some people, and it can take time to get used to it. It is

complex to create programs based on interaction of objects. Some of the key

programming techniques, such as inheritance and polymorphism, can be challenging

to comprehend initially.

2. Larger program size: Object-oriented programs typically involve more lines of code

than procedural programs.

3. Slower programs: Object-oriented programs are typically slower than procedure-

based programs, as they typically require more instructions to be executed.

4. Not suitable for all types of problems: There are problems that lend themselves well

to functional-programming style, logic-programming style, or procedure-based

programming style, and applying object-oriented programming in those situations will

not result in efficient programs.

3a. List out the business process of the library system.

Ans.

3b. Define business rule. List out the rules of the library system.

Ans.

business rules define specific instructions or constraints on how certain day-to-day actions

should be performed. For example, business rules can include: A decision-making approval

structure for invoice processing where only certain managers can sign off on invoices totaling

a specific amount.

lasses of Library Management System :

• Library Management System class –

It manages all operations of Library Management System. It is central part of

organization for which software is being designed.

• User Class –

It manages all operations of user.

• Librarian Class – It manages all operations of Librarian.

• Book Class –

It manages all operations of books. It is basic building block of system.

• Account Class –

It manages all operations of account.

• Library database Class –

It manages all operations of library database.

• Staff Class –

It manages all operations of staff.

• Student Class –

It manages all operations of student.

Attributes of Library Management System :

• Library Management System Attributes –

UserType, Username, Password

• User Attributes –

Name, Id

• Librarian Attributes –

Name, Id, Password, SearchString

• Book Attributes –

Title, Author, ISBN, Publication

• Account Attributes –

no_borrowed_books, no_reserved_books, no_returned_books, no_lost_books

fine_amount

• Library database Attributes –

List_of_books

• Staff Class Attributes –

Dept

• Student Class Attributes –

Class

Methods of Library Management System :

• Library Management System Methods –

Login(), Register(), Logout()

• User Methods –

Verify(), CheckAccount(), get_book_info()

• Librarian Methods –

Verify_librarian(), Search()

• Book Methods –

Show_duedt(), Reservation_status(), Feedback(), Book_request(), Renew_info()

• Account Methods –

Calculate_fine()

• Library database Methods –

Add(), Delete(), Update(), Display(), Search()

Class Diagram of Library Management System :

3c. Explain how do business rules relate to use cases with its four categories

4a. List out the guidelines to remember when writing use case.

Ans.

What Use Cases Include What Use Cases Do NOT Include

• Who is using the website

• What the user want to do

• The user's goal

• The steps the user takes to

accomplish a particular task

• How the website should respond to

an action

• Implementation-specific

language

• Details about the user

interfaces or screens.

Elements of a Use Case

Depending on how in depth and complex you want or need to get, use cases describe a

combination of the following elements:

• Actor – anyone or anything that performs a behavior (who is using the system)

• Stakeholder – someone or something with vested interests in the behavior of the

system under discussion (SUD)

• Primary Actor – stakeholder who initiates an interaction with the system to

achieve a goal

• Preconditions – what must be true or happen before and after the use case runs.

• Triggers – this is the event that causes the use case to be initiated.

• Main success scenarios [Basic Flow] – use case in which nothing goes wrong.

• Alternative paths [Alternative Flow] – these paths are a variation on the main

theme. These exceptions are what happen when things go wrong at the system

level.

4b. What is domain analysis? Explain the thumb rules and caveats come on handy.

Ans.

Domain analysis is the process by which a software engineer learns background information. He

or she has to learn sufficient information so as to be able to understand the problem and make

good decisions during requirements analysis and other stages of the software engineering

process. The word ‘domain’ in this case means the general field of business or technology in

which the customers expect to be using the software.

Some domains might be very broad, such as ‘airline reservations’, ‘medical diagnosis’, and

‘financial analysis’. Others are narrower, such as ‘the manufacturing of paint’ or ‘scheduling

meetings’. People who work in a domain and who have a deep knowledge of it (or part of it),

are called domain experts. Many of these people may become customers or users.

To perform domain analysis, you gather information from whatever sources of information

are available: these include the domain experts; any books about the domain; any existing

software and its documentation, and any other documents he or she can find. The interviewing,

brainstorming and use case analysis techniques discussed later in this chapter can help with

domain analysis. Object oriented modelling, discussed in the next chapter, can also be of

assistance.

As a software engineer, you are not expected to become an expert in the domain;

nevertheless, domain analysis can involve considerable work. The following benefits will

make this work worthwhile:

• Faster development: You will be able to communicate with the stakeholders more effectively,

hence you will be able to establish requirements more rapidly. Having performed domain

analysis will help you to focus on the most important issues.

• Better system: Knowing the subtleties of the domain will help ensure that the solutions you

adopt will more effectively solve the customer’s problem. You will make fewer mistakes, and

will know which procedures and standards to follow. The analysis will give you a global

picture of the domain of application; this will lead to better abstractions and hence improved

designs.

• Anticipation of extensions: Armed with domain knowledge, you will obtain insights into

emerging trends and you will notice opportunities for future development. This will allow

you to build a more adaptable system.

It is useful to write a summary of the information found during domain analysis. The process

of organizing and writing this summary can help you gain a better grasp of the knowledge;

the resulting document can help educate other software engineers who join the team later.

We suggest that a domain analysis document should be divided into sections such as the

following:

A. Introduction: Name the domain, and give the motivation for performing the analysis. The

motivation normally is that you are preparing to solve a particular problem by development

or extension of a software system.

B. Glossary: Describe the meanings of all terms used in the domain that are either not part of

everyday language or else have special meanings. You must master this terminology if you

want to be able to communicate with your customers and users. The terminology will appear

in the user interface of the software as well as in the documentation. You may be able to refer

to an existing glossary in some other document, rather than writing a new glossary. The

section is best placed at the start of the domain analysis document so you can subsequently

can use the defined terms.

C. General knowledge about the domain: Summarize important facts or rules that are widely

known by the domain experts and which would normally be learned as part of their education.

Such knowledge includes scientific principles, business processes, analysis techniques, and

how any technology works. This is an excellent place to use diagrams; however, where

possible point the reader for details to any readily accessible books or other documents. This

general knowledge will help you acquire an understanding of the data you may have to process

and computations you may have to perform.

D. Customers and users: Describe who will or might buy the software, and in what industrial

sectors they operate. Also, describe the other people who work in the domain, even

peripherally. Mention their background and attitude as well as how they fit into the

organization chart, and relate to each other. These people may become users.

E. The environment: Describe the equipment and systems used. The new system or extensions

will have to work in the context of this environment.

F. Tasks and procedures currently performed: Make a list of what the various people do as they

go about their work. It is important to understand both the procedures people are supposed to

follow as well as the shortcuts they tend to take. For example, if people are supposed to enter

certain information on a form, but rarely do, this suggests the information is not useful. Tasks

listed in this section may be candidates for automation.

G. Competing software: Describe what software is available to assist the users and customers,

including software that is already in use, and software on the market. Discuss its advantages

and disadvantages. This information suggests ideas for requirements, and highlights mistakes

to avoid.

H. Similarities across domains and organizations: Understanding what is generic versus what is

specific will help you to create software that might be more reusable or more widely

marketable. Therefore, determine what distinguishes this domain and the customer’s

organization from others, as well as what they have in common.

4c. Compare business process modeling & use case modeling.

Ans.

A use-case model is a model of how different types of users interact with the system to solve

a problem. As such, it describes the goals of the users, the interactions between the users and

the system, and the required behavior of the system in satisfying these goals.

A use-case model consists of a number of model elements. The most important model

elements are: use cases, actors and the relationships between them.

A use-case diagram is used to graphically depict a subset of the model to simplify

communications. There will typically be several use-case diagrams associated with a given

model, each showing a subset of the model elements relevant for a particular purpose. The

same model element may be shown on several use-case diagrams, but each instance must be

consistent. If tools are used to maintain the use-case model, this consistency constraint is

automated so that any changes to the model element (changing the name for example) will be

automatically reflected on every use-case diagram that shows that element.

The use-case model may contain packages that are used to structure the model to simplify

analysis, communications, navigation, development, maintenance and planning.

Much of the use-case model is in fact textual, with the text captured in the Use-Case

Specifications that are associated with each use-case model element. These specifications

describe the flow of events of the use case.

The use-case model serves as a unifying thread throughout system development. It is used as

the primary specification of the functional requirements for the system, as the basis for

analysis and design, as an input to iteration planning, as the basis of defining test cases and as

the basis for user documentation

Basic model elements

The use-case model contains, as a minimum, the following basic model elements.

Actor

A model element representing each actor. Properties include the actors name and brief

description.

Use Case

A model element representing each use case. Properties include the use case name and use

case specification.

Associations

Associations are used to describe the relationships between actors and the use cases they

participate in. This relationship is commonly known as a “communicates-association”.

• A business model is a company's core strategy for profitably doing business.

• Models generally include information like products or services the business plans to

sell, target markets, and any anticipated expenses.

• The two levers of a business model are pricing and costs.

• When evaluating a business model as an investor, ask whether the idea makes sense

and whether the numbers add up.

5a. Define structural pattern. List out consequences of adapter pattern.

Ans.

In Software Engineering, Structural Design Patterns are Design Patterns that ease the design

by identifying a simple way to realize relationships between entities.

• Adapter

Match interfaces of different classes

• Bridge

Separates an object's interface from its implementation

https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/bridge

• Composite

A tree structure of simple and composite objects

• Decorator

Add responsibilities to objects dynamically

• Facade

A single class that represents an entire subsystem

• Flyweight

A fine-grained instance used for efficient sharing

• Private Class Data

Restricts accessor/mutator access

• Proxy

An object representing another object

Adapter Design Pattern

Intent

• Convert the interface of a class into another interface clients expect. Adapter lets

classes work together that couldn't otherwise because of incompatible interfaces.

• Wrap an existing class with a new interface.

• Impedance match an old component to a new system

Problem

An "off the shelf" component offers compelling functionality that you would like to reuse,

but its "view of the world" is not compatible with the philosophy and architecture of the

system currently being developed.

Discussion

Reuse has always been painful and elusive. One reason has been the tribulation of designing

something new, while reusing something old. There is always something not quite right

between the old and the new. It may be physical dimensions or misalignment. It may be

timing or synchronization. It may be unfortunate assumptions or competing standards.

It is like the problem of inserting a new three-prong electrical plug in an old two-prong wall

outlet – some kind of adapter or intermediary is necessary.

Adapter is about creating an intermediary abstraction that translates, or maps, the old

component to the new system. Clients call methods on the Adapter object which redirects

them into calls to the legacy component. This strategy can be implemented either with

inheritance or with aggregation.

Adapter functions as a wrapper or modifier of an existing class. It provides a different or

translated view of that class.

Structure

Below, a legacy Rectangle component's display() method expects to receive "x, y, w, h"

parameters. But the client wants to pass "upper left x and y" and "lower right x and y". This

incongruity can be reconciled by adding an additional level of indirection – i.e. an Adapter

object.

https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/facade
https://sourcemaking.com/design_patterns/flyweight
https://sourcemaking.com/design_patterns/private_class_data
https://sourcemaking.com/design_patterns/proxy

The Adapter could also be thought of as a "wrapper".

5b. Describe the two important issues when implementing the fly weight pattern.

Ans.

lyweights may introduce run-time costs associated with transferring, finding, and/or

computing extrinsic state, especially if it was formerly stored as intrinsic state. However,

such costs are offset by space savings, which increase as more flyweights are shared.

Storage savings are a function of several factors:

• the reduction in the total number of instances that comes from sharing

• the amount of intrinsic state per object

• whether extrinsic state is computed or stored.

The more flyweights are shared, the greater the storage savings. The savings increase with the

amount of shared state. The greatest savings occur when the objects use substantial quantities

of both intrinsic and extrinsic state, and the extrinsic state can be computed rather than stored.

Then you save on storage in two ways: Sharing reduces the cost of intrinsic state, and you

trade extrinsic state for computation time.

5c. Describe the implementation and sample code of adapter pattern.

Ans.

mplementation

We have a MediaPlayer interface and a concrete class AudioPlayer implementing

the MediaPlayer interface. AudioPlayer can play mp3 format audio files by default.

We are having another interface AdvancedMediaPlayer and concrete classes implementing

the AdvancedMediaPlayer interface. These classes can play vlc and mp4 format files.

We want to make AudioPlayer to play other formats as well. To attain this, we have created

an adapter class MediaAdapter which implements the MediaPlayer interface and

uses AdvancedMediaPlayer objects to play the required format.

AudioPlayer uses the adapter class MediaAdapter passing it the desired audio type without

knowing the actual class which can play the desired format. AdapterPatternDemo, our demo

class will use AudioPlayer class to play various formats.

Step 1

Create interfaces for Media Player and Advanced Media Player.

MediaPlayer.java

public interface MediaPlayer {

 public void play(String audioType, String fileName);

}

AdvancedMediaPlayer.java

public interface AdvancedMediaPlayer {

 public void playVlc(String fileName);

 public void playMp4(String fileName);

}

Step 2

Create concrete classes implementing the AdvancedMediaPlayer interface.

VlcPlayer.java

public class VlcPlayer implements AdvancedMediaPlayer{

 @Override

 public void playVlc(String fileName) {

 System.out.println("Playing vlc file. Name: "+ fileName);

 }

 @Override

 public void playMp4(String fileName) {

 //do nothing

 }

}

Mp4Player.java

public class Mp4Player implements AdvancedMediaPlayer{

 @Override

 public void playVlc(String fileName) {

 //do nothing

 }

 @Override

 public void playMp4(String fileName) {

 System.out.println("Playing mp4 file. Name: "+ fileName);

 }

}

Step 3

Create adapter class implementing the MediaPlayer interface.

MediaAdapter.java

public class MediaAdapter implements MediaPlayer {

 AdvancedMediaPlayer advancedMusicPlayer;

 public MediaAdapter(String audioType){

 if(audioType.equalsIgnoreCase("vlc")){

 advancedMusicPlayer = new VlcPlayer();

 }else if (audioType.equalsIgnoreCase("mp4")){

 advancedMusicPlayer = new Mp4Player();

 }

 }

 @Override

 public void play(String audioType, String fileName) {

 if(audioType.equalsIgnoreCase("vlc")){

 advancedMusicPlayer.playVlc(fileName);

 }

 else if(audioType.equalsIgnoreCase("mp4")){

 advancedMusicPlayer.playMp4(fileName);

 }

 }

}

Step 4

Create concrete class implementing the MediaPlayer interface.

AudioPlayer.java

public class AudioPlayer implements MediaPlayer {

 MediaAdapter mediaAdapter;

 @Override

 public void play(String audioType, String fileName) {

 //inbuilt support to play mp3 music files

 if(audioType.equalsIgnoreCase("mp3")){

 System.out.println("Playing mp3 file. Name: " + fileName);

 }

 //mediaAdapter is providing support to play other file formats

 else if(audioType.equalsIgnoreCase("vlc") || audioType.equalsIgnoreCase("mp4")){

 mediaAdapter = new MediaAdapter(audioType);

 mediaAdapter.play(audioType, fileName);

 }

 else{

 System.out.println("Invalid media. " + audioType + " format not supported");

 }

 }

}

Step 5

Use the AudioPlayer to play different types of audio formats.

AdapterPatternDemo.java

public class AdapterPatternDemo {

 public static void main(String[] args) {

 AudioPlayer audioPlayer = new AudioPlayer();

 audioPlayer.play("mp3", "beyond the horizon.mp3");

 audioPlayer.play("mp4", "alone.mp4");

 audioPlayer.play("vlc", "far far away.vlc");

 audioPlayer.play("avi", "mind me.avi");

 }

}

Step 6

Verify the output.

Playing mp3 file. Name: beyond the horizon.mp3

Playing mp4 file. Name: alone.mp4

Playing vlc file. Name: far far away.vlc

Invalid media. avi format not supported

6a. Define the intent of Bridge pattern. Mention the consequences of bridge pattern.

Ans.

Intent

• Decouple an abstraction from its implementation so that the two can vary

independently.

• Publish interface in an inheritance hierarchy, and bury implementation in its own

inheritance hierarchy.

• Beyond encapsulation, to insulation

Use the Bridge pattern when:

• you want run-time binding of the implementation,

• you have a proliferation of classes resulting from a coupled interface and numerous

implementations,

• you want to share an implementation among multiple objects,

• you need to map orthogonal class hierarchies.

Consequences include:

• decoupling the object's interface,

• improved extensibility (you can extend (i.e. subclass) the abstraction and

implementation hierarchies independently),

• hiding details from clients.

Bridge is a synonym for the "handle/body" idiom. This is a design mechanism that

encapsulates an implementation class inside of an interface class. The former is the body, and

the latter is the handle. The handle is viewed by the user as the actual class, but the work is

done in the body. "The handle/body class idiom may be used to decompose a complex

abstraction into smaller, more manageable classes. The idiom may reflect the sharing of a

single resource by multiple classes that control access to it (e.g. reference counting)."

6b. What is decorator pattern? Explain with neat sketch various participants of decorator

pattern.

Ans.

Decorator pattern allows a user to add new functionality to an existing object without altering

its structure. This type of design pattern comes under structural pattern as this pattern acts as

a wrapper to existing class.

This pattern creates a decorator class which wraps the original class and provides additional

functionality keeping class methods signature intact.

We are demonstrating the use of decorator pattern via following example in which we will

decorate a shape with some color without alter shape class.

Implementation

We're going to create a Shape interface and concrete classes implementing

the Shape interface. We will then create an abstract decorator

class ShapeDecorator implementing the Shape interface and having Shape object as its

instance variable.

RedShapeDecorator is concrete class implementing ShapeDecorator.

DecoratorPatternDemo, our demo class will use RedShapeDecorator to

decorate Shape objects.

6c. Explain with necessary diagram how compiler façade makes life easier for most

programmers.

Ans.

7a. Mention & explain benefits of MVC pattern.

Ans.

Advantages Of Using MVC Framework

1. Faster Development Process:

MVC supports rapid and parallel development. If an MVC model is used to develop any

particular web application then it is possible that one programmer can work on the view while

the other can work on the controller to create the business logic of the web application. Hence

this way, the application developed using the MVC model can be completed three times faster

than applications that are developed using other development patterns.

2. Ability To Provide Multiple Views:

In the MVC Model, you can create multiple views for a model. Today, there is an increasing

demand for new ways to access your application and for that MVC development is certainly a

great solution. Moreover, in this method, Code duplication is very limited because it separates

data and business logic from the display.

3. Support For Asynchronous Technique:

The MVC architecture can also integrate with the JavaScript Framework. This means that

MVC applications can be made to work even with PDF files, site-specific browsers, and also

with desktop widgets. MVC also supports an asynchronous technique, which helps developers

to develop an application that loads very fast.

4. The Modification Does Not Affect The Entire Model:

For any web application, the user interface tends to change more frequently than even the

business rules of the .net development company. It is obvious that you make frequent changes

in your web application like changing colors, fonts, screen layouts, and adding new device

support for mobile phones or tablets. Moreover, Adding a new type of view are very easy in

https://www.brainvire.com/asp.net-core-development
https://www.brainvire.com/asp.net-core-development
https://www.brainvire.com/microsoft-enterprise-services/
https://www.brainvire.com/asp.net-development

the MVC pattern because the Model part does not depend on the views part. Therefore, any

changes in the Model will not affect the entire architecture.

5. MVC Model Returns The Data Without Formatting:

MVC pattern returns data without applying any formatting. Hence, the same components can

be used and called for use with any interface. For example, any kind of data can be formatted

with HTML, but it could also be formatted with Macromedia Flash or Dream viewer.

6. SEO Friendly Development Platform:

MVC platform supports the development of SEO friendly web pages or web applications.

Using this platform, it is very easy to develop SEO-friendly URLs to generate more visits from

a specific application. This development architecture is commonly used in Test-Driven

Development applications. Moreover, Scripting languages like JavaScript and jQuery can be

integrated with MVC to develop feature-rich web applications.

Thus, the MVC design pattern is surely a great approach to building software applications. The

MVC framework is easy to implement as it offers above given numerous advantages. Projects

that are developed with the help of the MVC model can be easily developed with lesser

expenditure and within less time too. Above all, its power to manage multiple views makes

MVC the best architecture pattern for developing web applications.

7b. With suitable use case tables explain analyzing a simple drawing program of MVC

pattern

Ans.

The DemoMVC class holds the main method that starts the

application. DemoModel implements the model part of the

application. DemoView and PaintPanel implement the view part of the

application. DemoController implements the controller part of the application.

The following UML diagram shows unidirectional associations because, for

example, DemoController has a DemoModel attribute, but not vice versa. A dependency is

shown from DemoView to DemoController because DemoView's registerController method

has a DemoController parameter.

https://www.brainvire.com/seo-services/

DemoModel

A DemoModel object has instance variables for storing an array of Points, the number

of Points, and a Color. [A Point object has instance variables x and y that can be directly

accessed, e.g., point.x and point.y.] DemoModel also has methods for updating and accessing

the points and the color. This implementation has some serious shortcomings that you are

encouraged to fix. For example, it would be better to use ArrayList<Point> instead of a fixed-

size Point array.

DemoController

A DemoController object has instance variables for a DemoModel and a DemoView, which

are initialized by the constructor. DemoController implements

the MouseMotionListener interface (mouseDragged and mouseMoved methods) and

the ListSelectionListener interface (valueChanged method).

The intent is that the mouseDragged method will be called whenever the user draws with the

mouse, and the valueChanged method will be called whenever the user selects a color.

The mouseMoved method is needed to implement the MouseMotionListener interface, but

does not need any code.

The mouseDragged method adds the Point from the MouseEvent to the model and repaints

the window. The valueChanged method obtains the selected color from the view (the event

object is not very useful, plus the view knows what the colors are), updates the model's color,

and repaints the window.

http://docs.oracle.com/javase/8/docs/api/java/awt/Color.html
http://docs.oracle.com/javase/8/docs/api/java/awt/Point.html
http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/8/docs/api/java/awt/event/MouseMotionListener.html
http://docs.oracle.com/javase/8/docs/api/javax/swing/event/ListSelectionListener.html
http://docs.oracle.com/javase/8/docs/api/java/awt/event/MouseEvent.html

DemoView

A DemoView object has instance variables for the window's components, plus two class

constants for the color selection: an array of Strings to be displayed, and an array

of Colors corresponding to the Strings. DemoView is a subclass of JFrame. The constructor

organizes the window, and the methods help to coordinate with the controller and the model.

The constructor sets up the window components as follows:

The JFrame consists of two JPanels (PaintPanel is a subclass of JPanel). The PaintPanel is

added to the "center" so that it will use up available space. The JList is added to the

left/west JPanel, embedded in a JScrollPane.

The registerListener method is used to register the controller with the specific components

that the user interacts with. The getSelectedColor method allows the controller to find out

what color in the JList was selected by the user.

The paint method might be a little mysterious because there is no paint method call in the

code. This method will be called as part of a call to the repaint method of the JFrame(see the

methods in DemoController). No code should directly call the paint method.

The paint method sets the background color of the JPanel that contains the JList and

calls super.paint(g) so that all the components will be drawn.

PaintPanel

The PaintPanel class implements the rest of the view. It is used to draw the points that the

user has drawn. PaintPanel extends JPanel and overrides the paintComponent method to draw

the points. paintComponent is another "mysterious" method; it will be called as part of

the repaint call. This method loops through all the Points in the model. Note

http://docs.oracle.com/javase/8/docs/api/java/awt/Color.html

that model.getPoint(i) returns null if there no Point at index i. For each Point,

the fillOval method of the Graphics object g is called. The Graphics class has many useful

methods for drawing figures.

The sequence of events that happens when the user drags the mouse in the PaintPanel is as

follows:

• A MouseEvent will be created and dispatched to the mouseDragged method of the

event handler. Note that when the window was initialized, the DemoController was

registered as an event handler for the PaintPanel.

• The mouseDragged method of the DemoController obtains the Point from

the MouseEvent, adds the point to the model, and repaints the view.

• The repainting of the window will be scheduled in coordination with the other GUI

events. For example, the user might have dragged the mouse quickly and

several MouseEvents might already be in the queue. Athough each of these events

will result in a repaint call, only one repainting will be scheduled (very inefficient

otherwise).

• When the repainting actually occurs, the paint method in DemoView and

the paintComponent method in PaintPanel will be called. These need calls

to super.paint and super.paintComponent respectively so that the whole window is

drawn properly.

7c. Explain interaction diagram for the bridge pattern between the two classes

Ans.

Bridge is used when we need to decouple an abstraction from its implementation so that the

two can vary independently. This type of design pattern comes under structural pattern as this

pattern decouples implementation class and abstract class by providing a bridge structure

between them.

This pattern involves an interface which acts as a bridge which makes the functionality of

concrete classes independent from interface implementer classes. Both types of classes can be

altered structurally without affecting each other.

We are demonstrating use of Bridge pattern via following example in which a circle can be

drawn in different colors using same abstract class method but different bridge implementer

classes.

Implementation

We have a DrawAPI interface which is acting as a bridge implementer and concrete

classes RedCircle, GreenCircle implementing the DrawAPI interface. Shape is an abstract

class and will use object of DrawAPI. BridgePatternDemo, our demo class will

use Shape class to draw different colored circle.

8a. Explain the sequence of operations for adding a label which deals with the environmental

variables.

Ans.

8b. Explain the design of the controller subsystem with controller class diagram.

Ans.

Subsystems

• subsystem -- a smaller, simpler part of a larger system

o a subsystem is made of a number of solution domain classes

o often one developer or development team is responsible for one subsystem

• service -- a set of related operations that share a common purpose

• subsystem interface -- a set of operations of a subsystem available to other

subsystems.

o One subsystem provides services to others, specified through its interface

o Application Programmer Interface (API) -- refinement of general subsystem

interface

• subsystem decomposition -- the activity of identifying subsystems, their services, and

their relationships to each other

Coupling and Cohesion

• coupling -- the strength of dependencies between two subsystems

o strongly coupled == changes to one subsystem likely to affect the other

o loosely coupled == relatively independent (as long as the interface doesn't

change)

o Goal: Strive for loose couplings. Don't share attributes; use operations and a

well-specified interface

• cohesion / coherence -- strength of dependencies within a subsystem

o High cohesion: subsystem contains related objects performing similar tasks

o Low cohesion: subsystem contains a number of unrelated objects

o Goal: Strive for high cohesion

9a. what is remote object? Explain Java Remote Method Invocation

Ans.

Definition

A remote object is an object that defines methods that can be called by a client located in a

remote Java Virtual Machine (JVM). A remote object implements one or more remote

interfaces that declare remote methods of the object.

Use

Consider the following guidelines when you implement the remote interface inherited by the

remote object:

• The implementation class can implement one or more remote interfaces.

• The implementation class can inherit other remote objects.

• The implementation class can declare methods that are not declared by a remote

object; those methods can be called locally only.

The RMI (Remote Method Invocation) is an API that provides a mechanism to create

distributed application in java. The RMI allows an object to invoke methods on an object

running in another JVM.

The RMI provides remote communication between the applications using two

objects stub and skeleton.

Understanding stub and skeleton

RMI uses stub and skeleton object for communication with the remote object.

A remote object is an object whose method can be invoked from another JVM. Let's

understand the stub and skeleton objects:

stub

The stub is an object, acts as a gateway for the client side. All the outgoing requests are

routed through it. It resides at the client side and represents the remote object. When the

caller invokes method on the stub object, it does the following tasks:

1. It initiates a connection with remote Virtual Machine (JVM),

2. It writes and transmits (marshals) the parameters to the remote Virtual Machine

(JVM),

3. It waits for the result

4. It reads (unmarshals) the return value or exception, and

5. It finally, returns the value to the caller.

skeleton

The skeleton is an object, acts as a gateway for the server side object. All the incoming

requests are routed through it. When the skeleton receives the incoming request, it does the

following tasks:

1. It reads the parameter for the remote method

2. It invokes the method on the actual remote object, and

3. It writes and transmits (marshals) the result to the caller.

In the Java 2 SDK, an stub protocol was introduced that eliminates the need for skeletons.

9b. Explain implanting an object oriented system on the web.

Ans.

Different classes of W3Object support different operational interfaces, which are obtained

through the use of interface inheritance. Abstract classes are used to define an interface to a

particular object abstraction, without specifying any particular implementation of the

operations. Different classes of W3Objects may share conformance to a particular abstract

interface, but may implement the operations differently, in a manner appropriate to the

particular class. For example, consider a Manageable interface, including a migrate operation,

for moving objects from one location to another. While the same interface is appropriate for

many classes of W3Objects, the implementations may differ; for example, migration of a

hypertext object may require some internal link manipulation operations in addition to the

operations required by, say, a text file.

9c. Write short notes on servlet container.

Ans.

10a. Explain the class diagram for library servlets.

Ans.

10b. Explain simplified sequence diagram for removing books

Ans.

10c. Define sessions & session object of servlets.

Ans.

