
Q. 

No. 

 

VTU Exams March 2021 

Subject: Database management Systems Code 18CS53  

Solutions 

Mark

s 

1.a i) Database: A database is an organized collection of data, so that it can be easily 

accessed and managed. You can organize data into tables, rows, columns, and index 

it to make it easier to find relevant information. 

ii)DBMS Catalog: The database catalog of a database instance consists of metadata 

in which definitions of database objects such as base tables, views (virtual tables), 

synonyms, value ranges, indexes, users, and user groups are stored. 

iii) Entity: Entity in DBMS can be a real-world object with an existence, For example, in a 

College database, the entities can be Professor, Students, Courses, etc. 

iv) Snapshot: Database snapshots are like a view of a database as it was at a certain 

point in time. It is a read-only copy of the data and the state of the pages, which are 

made possible using a pointer file called the sparse file. Snapshot is a recent copy 

of the table from the database or a subset of rows/columns of a table. The SQL 

statement that creates and subsequently maintains a snapshot normally reads data 

from the database residing server. A snapshot is created on the destination system 

with the create snapshot SQL command. The remote table is immediately defined 

and populated from the master table. 

These are used to dynamically replicate data between distributed databases. Two 

types of snapshots are available. 

1. Simple snapshots 

2. Complex snapshots 

v) Degree of a relationship: The degree of a relationship is the number of entity types 

that participate (associate) in a relationship. By seeing an E-R diagram, we can simply tell 

the degree of a relationship i.e the number of an entity type that is connected to a 

relationship is the degree of that relationship. 

 

05 

1.b Types of end users with example: 

Database users are categorized based up on their interaction with the data base. 

These are seven types of data base users in DBMS. 

1. Database Administrator (DBA) : 
Database Administrator (DBA) is a person/team who defines the schema 

and also controls the 3 levels of database. The DBA will then create a new 

account id and password for the user if he/she need to access the data 

base.DBA is also responsible for providing security to the data base and he 

allows only the authorized users to access/modify the data base. 

05 

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Synonym
https://en.wikipedia.org/wiki/Index_(database)
https://en.wikipedia.org/wiki/User_(computing)


o DBA also monitors the recovery and back up and provide technical 

support. 

o The DBA has a DBA account in the DBMS which called a system or 

superuser account. 

o DBA repairs damage caused due to hardware and/or software 

failures. 

2. Naive / Parametric End Users : 
Parametric End Users are the unsophisticated who don’t have any DBMS 

knowledge but they frequently use the data base applications in their daily 

life to get the desired results. 

For examples, Railway’s ticket booking users are naive users. Clerk in any 

bank is a naive user because they don’t have any DBMS knowledge but they 

still use the database and perform their given task. 

3. System Analyst:  
System Analyst is a user who analyzes the requirements of parametric end 

users. They check whether all the requirements of end users are satisfied. 

4. Sophisticated Users:  
Sophisticated users can be engineers, scientists, business analyst, who are 

familiar with the database. They can develop their own data base 

applications according to their requirement. They don’t write the program 

code but they interact the data base by writing SQL queries directly through 

the query processor. 

5. Data Base Designers:  
Data Base Designers are the users who design the structure of data base 

which includes tables, indexes, views, constraints, triggers, stored 

procedures. He/she controls what data must be stored and how the data 

items to be related. 

6. Application Program:  
Application Program are the back end programmers who writes the code for 

the application programs. They are the computer professionals. These 

programs could be written in Programming languages such as Visual Basic, 

Developer, C, FORTRAN, COBOL etc. 

7. Casual Users / Temporary Users : 
Casual Users are the users who occasionally use/access the data base but 

each time when they access the data base they require the new information, 

for example, Middle or higher level manager. 

1.c. List of the advantages of using DBMS: 

In contrast with the File Based Data Management System, Dbms has numerous 

benefits. We are putting light on some of the considerable benefits here– 

1. Data Integrity 

10 



Data integrity means data is consistent and accurate in the database. It is essential as 

there are multiple databases in DBMS. All these databases contain data which is 

visible to multiple users. Therefore, it is essential to ensure that data is consistent and 

correct in all databases for all users. 

2. Data Security 

Data security is a vital concept in a database. Only users authorized must be allowed 

to access the database and their identity must be authenticated using username and 

password. Unauthorized users shouldn’t be allowed to access the database under any 

circumstances as it violets the integrity constraints. 

A DBMS provides a better platform for data privacy thus helping companies to offer 

an improved data security. 

3. Better data integration 

Due to the database management system, we have access to well managed and 

synchronized form of data making it easy to handle. It also gives an integrated view 

of how a particular organization is working and keeps track of how one segment of 

the company affects another segment. 

4. Minimized Data Inconsistency 

Data inconsistency occurs between files when various versions of the same data 

appear in different places. Data consistency is ensured in the database; there is no 

data redundancy. Besides, any database changes are immediately reflected by all 

users, and there is no data inconsistency.  

5. Faster Data Access 

The database management system helps the users to produce quick answers to queries 

making data accessing accurate and faster.  

For any given dataset, dbms can help in solving insightful financial queries like: 

1. What is the bonus given to every salesperson in the last two months? 

2. How many customers have a credit score or more than 800? 

3. What is last year’s profit? 

4. Better decision making 

Due to DBMS, we now have improved and managed data accessing because of which 

we can generate better quality information which can hence make better decisions. 



Better quality ultimately improves validity, accuracy and time it takes to read data. It 

doesn’t guarantee data quality; it provides a framework to make it easy to enhance 

data quality. 

5. Simplicity 

DBMS allows us to understand data better with a clear and simple logical view. With 

dbms, many operations like deletion, insertion or creation of file or data, are easy to 

implement. 

6. Recovery and Backup 

DBMS automatically takes care of recovery and backup. The users are not required 

to take periodical backup as this is taken care of by DBMS. Besides, it also restores 

a database after a system failure or crash to prevent its previous condition. 

7. Increased end-user productivity 

The available data transform into helpful information with the help of combination 

tools. It helps end users make better, informative and quick decisions that can make 

the difference between success and failure in the global economy. 

Additionally, today DBMS is also serving as the backbone of several advanced 

Technology practices like Data Science, Data Modeling and Machine Learning. So, 

if you are someone looking for a career in analytics or automation then DBMS is a 

must have skill for you. 

 

2.a i) Cardinality: 

Cardinality is a relationship or joins between rows of 1 table to the rows of another 

table. A number that represents, one instance of first entity (table) is related to how many 

instances of the second entity, is known as cardinality. 

 
ii)Weak Entity 

Weak entity  

 A weak entity is an entity set that does not have sufficient attributes for Unique 

Identification of its records  

05 



 Simply a weak entity  is nothing but an entity which does not have a primary key 

attribute  

  It contains a partial key called as discriminator which helps in identifying a 

group of entities from the entity set  

 Discriminator is represented by underlining with a dashed line  

 Representation  

  

o A double rectangle is used for representing a weak entity set 

o The double diamond symbol is used for representing the relationship 

between a strong entity and weak entity which is known as identifying 

relationship  

o Double lines are used for presenting the connection with a weak entity 

set with relationship  

Example for weak entity   

  

o In the ER diagram, we have two entities building and apartment 

o Building is a strong entity because it has a primary key attribute called 

building number which is capable of uniquely identifying all the flats 

present in the apartment  

o Unlike building, apartment is weak entity because it does not have any 

primary key and door number here acts only as a discriminator 
because door number cannot be used as a primary key, there might be 

multiple flats in the building with the same door number or on different 

floors. 

 
iii)Program data Independence 

Data independence is the type of data transparency that matters for a centralized DBMS. It 

refers to the immunity of user applications to changes made in the definition and 

organization of data. Application programs should not, ideally, be exposed to details of 

data representation and storage. The DBMS provides an abstract view of the data that hides 

such details. 

iv)Total Participation 



It specifies that each entity in the entity set must compulsorily participate in at least one 

relationship instance in that relationship set. That is why; it is also called as mandatory 

participation. 

 
 

v)Value Sets: 

A value set is a uniquely identifiable set of valid concept representations, where any concept 

representation can be tested to determine whether or not it is a member of the value set. A 

value set is typically used to represent the possible values of a coded data element in an 

information model. 

 

2.b Three Schema Architecture: 

The three-schema architecture is as follows: 

 The three schema architecture is also called ANSI/SPARC architecture or 

three-level architecture. 

 This framework is used to describe the structure of a specific database 

system.  

 The three schema architecture is also used to separate the user applications 

and physical database.  

 The three schema architecture contains three-levels. It breaks the database 

down into three different categories. 

 

05 



Mapping between Schema levels: 

1. Conceptual/Internal Mapping: 

 The conceptual/internal mapping defines the correspondence between the 

conceptual view and the store database. 

 It specifies how conceptual record and fields are represented at the internal 

level. 

 It relates conceptual schema with internal schema. 

 If structure of the store database is changed. 

 If changed is made to the storage structure definition-then the 

conceptual/internal mapping must be changed accordingly, so that the 

conceptual schema can remain invariant. 

 There could be one mapping between conceptual and internal levels. 

2. External/Conceptual Mapping: 

 The external/conceptual mapping defines the correspondence between a 

particular external view and conceptual view. 

 It relates each external schema with conceptual schema. 

 The differences that can exist between these two levels are analogous to 

those that can exist between the conceptual view and the stored database. 

 Example: fields can have different data types; fields and record name can be 

changed; several conceptual fields can be combined into a single external 

field. 

 Any number of external views can exist at the same time; any number of 

users can share a given external view: different external views can overlap. 

 There could be several mapping between external and conceptual levels. 

2.c Different types of attributes in ER Model: 

1. Simple attribute: 
An attribute which cannot be further subdivided into components is a simple 

attribute. 

Example: The roll number of a student, the id number of an employee. 

2. Composite attribute: 
An attribute which can be splitted into components is a composite attribute. 

Example: The address can be further splitted into house number, street 

number, city, state, country and pincode, the name can also be splitted into 

first name middle name and last name. 

10 



3. Single-valued attribute: 
The attribute which takes up only a single value for each entity instance is 

single-valued attribute. 

Example: The age of a student. 

4. Multi-valued attribute: 
The attribute which takes up more than a single value for each entity 

instance is multi-valued attribute. 

Example: Phone number of a student:Landline and mobile. 

5. Derived attribute: 
An attribute that can be derived from other attributes is derived attribute. 

Example: Total and average marks of a student. 

 

Examples: 

 
 

3.a Entity Integrity constraint: 

The entity integrity constraint states that primary key value can't be null. This is because 

the primary key value is used to identify individual rows in relation and if the primary key 

has a null value, then we can't identify those rows. A table can contain a null value other 

than the primary key field. 

05 



  
Referential Integrity Constraint: 

 A referential integrity constraint is specified between two tables. 

 In the Referential integrity constraints, if a foreign key in Table 1 refers to 

the Primary Key of Table 2, then every value of the Foreign Key in Table 1 

must be null or be available in Table. 

  

They are important because of- 

They are important to enforce business constraints, Integrity and control redundancy. 

 

 

3.b Equi-Join and Natural Join using Relational Algebra Symbol: 05 



Equijoin(⋈): Equijoin is a special case of conditional join where only equality 

condition holds between a pair of attributes. As values of two attributes will be 

equal in result of equijoin, only one attribute will be appeared in result. 

Example: Select students whose ROLL_NO is equal to EMP_NO of employees 

STUDENT⋈STUDENT.ROLL_NO=EMPLOYEE.EMP_NOEMPLOYEE 

Natural Join(⋈): It is a special case of equijoin in which equality condition hold 

on all attributes which have same name in relations R and S (relations on which join 

operation is applied). While applying natural join on two relations, there is no need 

to write equality condition explicitly. Natural Join will also return the similar 

attributes only once as their value will be same in resulting relation. 

Example: Select students whose ROLL_NO is equal to ROLL_NO of 

STUDENT_SPORTS as: 

STUDENT⋈STUDENT_SPORTS 

 

3.c 

 
 

Ans 

(i) σ destination = “New Delhi” (flight) 

ii) σ src = “Chennai” ^ dest = “New Delhi” (flight) 

iii) Π fid (σ pid = 123 (booking) ⨝  σ dest = “Chennai” ^ fdate < 06/11/2020 

(flight)) 

iv) (σ fdate = 01/12/2020 ^ time = 16:00 (flight)) ∩ (σ fdate = 02/12/2020 ^ time = 

16:00 (flight)) 

v) Π passengers.pid, pname, pcity (σ pgender = “Male” (passengers ⨝ booking ⨝ agency)) 

 

10 

4a. ER to relational mapping algorithm with: 10 



Here is the various cases that explain how to convert ER diagram to Relational 

Model for different scenarios. 

Step 1: Mapping of Regular Entity Types. 

 For each regular (strong) entity type E in the ER schema, create a 

relation R that includes all the simple attributes of E. 

 Choose one of the key attributes of E as the primary key for R. 

 If the chosen key of E is composite, the set of simple attributes that 

form it will together form the primary key of R. 

 Example: We create the relations EMPLOYEE, DEPARTMENT, and 

PROJECT in the relational schema corresponding to the regular entities in 

the ER diagram. 

 SSN, DNUMBER, and PNUMBER are the primary keys for the 

relations EMPLOYEE, DEPARTMENT, and PROJECT as shown. 

Step 2: Mapping of Weak Entity Types 

 For each weak entity type W in the ER schema with owner entity 

type E, create a relation R & include all simple attributes (or simple 

components of composite attributes) of W as attributes of R. 

 Also, include as foreign key attributes of R the primary key 

attribute(s) of the relation(s) that correspond to the owner entity 

type(s). 

 The primary key of R is the combination of the primary key(s) of the 

owner(s) and the partial key of the weak entity type W, if any. 

 Example: Create the relation DEPENDENT in this step to correspond to the 

weak entity type DEPENDENT. 

 Include the primary key SSN of the EMPLOYEE relation as a 

foreign key attribute of DEPENDENT (renamed to ESSN).  

 The primary key of the DEPENDENT relation is the combination 

{ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is 

the partial key of DEPENDENT.  

Step 3: Mapping of Binary 1:1 Relation Types 

 For each binary 1:1 relationship type R in the ER schema, identify 

the relations S and T that correspond to the entity types participating 

in R. 

 There are three possible approaches: 

 Foreign Key approach: Choose one of the relations-say S-and 

include a foreign key in S the primary key of T. It is better to choose 

an entity type with total participation in R in the role of S.  

 Example: 1:1 relation MANAGES is mapped by choosing 

the participating entity type DEPARTMENT to serve in the 



role of S, because its participation in the MANAGES 

relationship type is total. 

 Merged relation option: An alternate mapping of a 1:1 relationship 

type is possible by merging the two entity types and the relationship 

into a single relation. This may be appropriate when both 

participations are total. 

 Cross-reference or relationship relation option: The third 

alternative is to set up a third relation R for the purpose of cross-

referencing the primary keys of the two relations S and T 

representing the entity types. 

Step 4: Mapping of Binary 1:N Relationship Types. 

 For each regular binary 1:N relationship type R, identify the relation 

S that represent the participating entity type at the N-side of the 

relationship type.  

 Include as foreign key in S the primary key of the relation T that 

represents the other entity type participating in R.  

 Include any simple attributes of the 1:N relation type as attributes of 

S.  

 Example: 1:N relationship types WORKS_FOR, CONTROLS, and 

SUPERVISION in the figure. 

 For WORKS_FOR we include the primary key DNUMBER of the 

DEPARTMENT relation as foreign key in the EMPLOYEE relation 

and call it DNO.  

 Step 5: Mapping of Binary M:N Relationship Types. 
 For each regular binary M:N relationship type R, create a new 

relation S to represent R.  

 Include as foreign key attributes in S the primary keys of the 

relations that represent the participating entity types; their 

combination will form the primary key of S.  

 Also include any simple attributes of the M:N relationship type (or 

simple components of composite attributes) as attributes of S. 

 Example: The M:N relationship type WORKS_ON from the ER  diagram is 

mapped by creating a relation WORKS_ON in the relational database 

schema. 

 The primary keys of the PROJECT and EMPLOYEE relations are 

included as foreign keys in WORKS_ON and renamed PNO and 

ESSN, respectively.  

 Attribute HOURS in WORKS_ON represents the HOURS attribute 

of the relation type. The primary key of the WORKS_ON relation is 

the combination of the foreign key attributes {ESSN, PNO}.  

Step 7: Mapping of N-ary Relationship Types.  



 For each n-ary relationship type R, where n>2, create a new 

relationship S to represent R. 

 Include as foreign key attributes in S the primary keys of the 

relations that represent the participating entity types.  

 Also include any simple attributes of the n-ary relationship type (or 

simple components of composite attributes) as attributes of S.  

 Example: The relationship type SUPPY in the ER on the next slide. 

 This can be mapped to the relation SUPPLY shown in the relational 

schema, whose primary key is the combination of the three foreign 

keys {SNAME, PARTNO, PROJNAME}  

Step8: Options for Mapping Specialization or Generalization. 

 Convert each specialization with m subclasses {S1, S2,….,Sm} and 

generalized superclass C, where the attributes of C are {k,a1,…an} 

and k is the (primary) key, into relational schemas using one of the 

four following options: 

 Option 8A: Multiple relations-Superclass and subclasses 

 Option 8B: Multiple relations-Subclass relations only 

 Option 8C: Single relation with one type attribute 

 Option 8D: Single relation with multiple type attributes 

4.b 

 
 

a. Find the names, street address, and cities of residence for all employees who 

work for 'First Bank Corporation' and earn more than $10,000.  

 

select employee.employee-name, employee.street, employee.city from employee, works 

where employee.employee-name=works.employee-name and company-name = 'First 

Bank Corporation' and salary > 10000) 

 

b.  Find the names of all employees in the database who do not work for 'First 

Bank Corporation'. Assume that all people work for exactly one company.  

Select employee-name from works where company-name not in( 'First Bank Corporation'); 

 

10 



c.  Find the names of all employees in the database who earn more than every 

employee of 'Small Bank Corporation'. Assume that all people work for at most 

one company.  

select employee-name from works where salary > all (select salary from works where 

company-name = 'Small Bank Corporation') 

d. Find the name of the company that has the smallest payroll 

Select  C.comany_name, min(salary) as “smallest payroll”  from  Employee E, Works 

W, Company C where E.employee_name = W.employee_name and 

W.company_name=C.company_name 

Group by C.company_name ; 

 

e. Find the names of all employees in the database who live in the same cities and on 

the same streets as do their managers.  
select p.employee-name from employee p, employee r, manages m where p.employee-

name = m.employee-name and m.manager-name = r.employee-name and p.street = 

r.street and p.city = r.city  

 

5.a Explain the Cursors and its properties in Embedded SQL with example: 

A cursor is used to retrieve rows from a query that has multiple rows in its result 

set. A cursor is a handle or an identifier for the SQL query and a position within 

the result set.  

To manage the cursor in embedded SQL following steps to consider- 

1. Declare a cursor for a particular SELECT statement, using the DECLARE 

statement. 

2. Open the cursor using the OPEN statement. 

3. Retrieve results one row at a time from the cursor using the FETCH 

statement. 

4. Fetch rows until the Row Not Found warning is returned.  

Errors and warnings are returned in the SQLCA structure. See The SQL 

Communication Area (SQLCA).  

5. Close the cursor, using the CLOSE statement. 

Example: 

void print_employees( void ) 

{ 

  EXEC SQL BEGIN DECLARE SECTION; 

  char      name[50]; 

  char      sex; 

  char      birthdate[15]; 

  a_sql_len ind_birthdate; 

  EXEC SQL END DECLARE SECTION; 

  EXEC SQL DECLARE C1 CURSOR FOR 

    SELECT GivenName || ' ' || Surname, 

05 

http://dcx.sybase.com/1200/en/dbprogramming/sqlca.html
http://dcx.sybase.com/1200/en/dbprogramming/sqlca.html


      Sex, BirthDate 

    FROM Employees; 

  EXEC SQL OPEN C1; 

  for( ;; )  

  { 

    EXEC SQL FETCH C1 INTO :name, :sex,  

        :birthdate:ind_birthdate; 

    if( SQLCODE == SQLE_NOTFOUND )  

    { 

      break; 

    }  

    else if( SQLCODE < 0 )  

    { 

      break; 

    } 

 

    if( ind_birthdate < 0 )  

    { 

      strcpy( birthdate, "UNKNOWN" ); 

    } 

    printf( "Name: %s Sex: %c Birthdate: 

         %s.n",name, sex, birthdate ); 

  } 

  EXEC SQL CLOSE C1; 

} 

 

5.b Trigger defined in these ways- 

Generalized Model for Active Databases and Oracle Triggers 

Triggers are executed when a specified condition occurs during insert/delete/update 

Triggers are action that fire automatically based on these conditions 

 

Generalized Model (contd.)  

Triggers follow an Event-condition-action (ECA) model  

Event:  

Database modification  

E.g., insert, delete, update), 

Condition: 

Any true/false expression 

Optional: If no condition is specified then condition is always true 

Action: 

Sequence of SQL statements that will be automatically executed 

When a new employees is added to a department, modify the Total_sal of the Department 

to include the new employees salary 

Logically this means that we will CREATE a TRIGGER, let us call the trigger Total_sal1 

This trigger will execute AFTER INSERT ON Employee table 

It will do the following FOR EACH ROW 

WHEN NEW.Dno is NOT NULL 

The trigger will UPDATE DEPARTMENT 

By SETting the new Total_sal to be the sum of  

old Total_sal and NEW. Salary 

WHERE the Dno matches the NEW.Dno; 

 

05 



 

5.c Insert, update, delete, update, alter and drop in SQL with examples: 

Create Table 

  

The CREATE TABLE statement is used to create a new table in a database. In that 

table, if you want to add multiple columns, use the below syntax. 

  

Syntax 

1. CREATE TABLE table_name (   

2.     column1 datatype,   

3.     column2 datatype,   

4.     column3 datatype,   

5.    ....   

6. );   

The column parameters specify the names of the columns of the table. 

  

The data type parameter specifies the type of data the column can hold (e.g. 

varchar, integer, date, etc.). 

  

Create Table Example 

1. CREATE TABLE Employee(   

2.     EmpId int,   

3.     LastName varchar(255),   

4.     FirstName varchar(255),   

5.     Address varchar(255),   

6.     City varchar(255)    

10 



7. );   

The EmpId column is of type int and will hold an integer. 

  

The LastName, FirstName, Address, and City columns are of type varchar and will 

hold characters and the maximum length for these fields is 255 characters. 

  

Insert Value in this Table 

  

The INSERT INTO statement is used to insert new records in a table. 

  

It is possible to write the INSERT INTO statement in two ways. 

  

Syntax  

  

The first way specifies both the column names and the values to be inserted. 

  

If you are adding values for all the columns of the table, then no need to specify the 

column names in the SQL query. However, make sure that the order of the values is 

in the same order as the columns in the table. 

1. INSERT INTO table_name (column1, column2, column3, ...)   

2. VALUES (value1, value2, value3, ...);   

3.    

4.   '2nd way 

5. INSERT INTO table_name   

6. VALUES (value1, value2, value3, ...);   

Example 
  

Insert value in a 1st way. The column names are used here 

1. INSERT INTO Employee    (EmpId,LastName,FirstName,ADDRESS,City)  

2. VALUES (1, 'XYZ', 'ABC', 'India', 'Mumbai' );  

3.   INSERT INTO Employee (EmpId,LastName,FirstName,ADDRESS,City)  

4. VALUES (2, 'X', 'A', 'India', 'Pune' ); 

Insert value in a 2nd way. 

1. INSERT INTO Employee 

2. VALUES (3, 'XYZ', 'ABC', 'India', 'Mumbai' );   

Select Statment in SQL 



  

The SELECT statement is used to select data from a database. 

  

The data returned is stored in a result table, called the result-set. 

1. SELECT column1, column2, ...   

2. FROM table_name;   

Here, column1, column2, ... are the field names of the table you want to select from 

the data. If you want to select all the fields available in the table, use the following 

syntax:  

1. SELECT * FROM table_name;   

If the above query is executed, then all record is displayed.  

  

Example 

1. Select EmpId, LastName from Employee;   

2. Select * from Employee;   

Update Table  

  

The UPDATE statement is used to modify the existing records in a table. 

  

Syntax  

1. UPDATE table_name   

2. SET column1 = value1, column2 = value2, ...   

3. WHERE condition;   

Example  

1. UPDATE Employee   

2. SET FirstName= 'KS', City= 'Pune'   

3. WHERE EmpId= 1;   

If the above query is executed then for EmpId= 1, "Firstname" and "City" column 

data will be updated.  

  

Update Multiple Rows 

  

It is the WHERE clause that determines how many records will be updated.  



1. UPDATE Employee 

2. SET City='Pune'   

Delete Statment in SQL 

  

The DELETE statement is used to delete existing records in a table for a particular 

Record. 

  

Syntax 

1. DELETE FROM table_name WHERE condition;   

Example 

1. DELETE FROM Employee WHERE EmpId=1;   

In Employee table EmpId = 1 record gets deleted.  

 

Alter Statement in SQL 

Alter command is used to change the physical structure of a table such as adding or 

removing columns, changing their data types, adding or removing business rules 

etc. 

Example 

Alter table Employee add Mobile varchar(12); 

Drop Statement in SQL 

This command is used to delete a table along with their structure. 

Example 

Drop table Employee; 

 

 

6.a Stored Procedure in SQL: 

They are the procedure stored after compilation in database and can be executed many 

times as per the use. 

Syntax: 

 &&   

05 



CREATE PROCEDURE procedure_name [[IN | OUT | INOUT] parameter_name d

atatype [, parameter datatype]) ]     

     

    Declaration_section     

    Executable_section     

 &&   

 ;   

IN parameter 

It is the default mode. It takes a parameter as input, such as an attribute. When we 

define it, the calling program has to pass an argument to the stored procedure. This 

parameter's value is always protected. 

OUT parameters 

It is used to pass a parameter as output. Its value can be changed inside the stored 

procedure, and the changed (new) value is passed back to the calling program. It is 

noted that a procedure cannot access the OUT parameter's initial value when it 

starts. 

INOUT parameters 

It is a combination of IN and OUT parameters. It means the calling program can 

pass the argument, and the procedure can modify the INOUT parameter, and then 

passes the new value back to the calling program. 

CALL procedure_name ( parameter(s))  

Example: 

1. DELIMITER &&   

2. CREATE PROCEDURE get_merit_student ()   

3. BEGIN   

4.     SELECT * FROM student_info WHERE marks > 70;   

5.     SELECT COUNT(stud_code) AS Total_Student FROM student_info;     

6. END &&   

7. DELIMITER ;   

 

6.b Types of JDBC drivers: 

Today, there are five types of JDBC drivers in use: 

 Type 1: JDBC-ODBC bridge 

 Type 2: partial Java driver 

05 



 Type 3: pure Java driver for database middleware 

 Type 4: pure Java driver for direct-to-database 

 Type 5: highly-functional drivers with superior performance 

Type 5 JDBC drivers (such as DataDirect JDBC drivers) offer advanced 

functionality and superior performance over other driver types. 

Type 4 drivers are the most common and are designed for a particular vendor's 

database. 

In contrast, Type 3 is a single JDBC driver used to access a middleware server, 

which, in turn, makes the relevant calls to the database. A good example of Type 3 

JDBC driver is the DataDirect SequeLink JDBC driver. 

Type 1 JDBC drivers are used for testing JDBC applications against an ODBC 

data source. Type 2 JDBC drivers require a native database API to be used. Both 

Type 1 and Type 2 JDBC driver types mix a Java-based API with another API. 

The following figure shows a side-by-side comparison of the implementation of 

each of the JDBC driver types. All four implementations show a Java application or 

applet using the JDBC API to communicate through the JDBC Driver Manager 

with a specific JDBC driver type. 

https://www.progress.com/jdbc
https://www.progress.com/sequelink


 

 

6.c Aggregate functions in SQL: 

 

10 



Count() Function 

MySQL count() function returns the total number of values in the expression. 

This function produces all rows or only some rows of the table based on a specified 

condition, and its return type is BIGINT. It returns zero if it does not find any 

matching rows. It can work with both numeric and non-numeric data types. 

1. mysql> SELECT SUM(working_hours) AS "Total working hours" FROM e

mployee;     

AVG() Function 

MySQL AVG() function calculates the average of the values specified in the 

column. Similar to the SUM() function, it also works with numeric data type only. 

Suppose we want to get the average working hours of all employees in the table, we 

need to use the AVG() function as shown in the following query: 

mysql> SELECT AVG(working_hours) AS "Average working hours" FROM employee; 

  

MIN() Function 

MySQL MIN() function returns the minimum (lowest) value of the specified 

column. It also works with numeric data type only. 

Suppose we want to get minimum working hours of an employee available in the 

table, we need to use the MIN() function as shown in the following query: 

1. mysql> SELECT MIN(working_hours) AS Minimum_working_hours FRO

M employee;     

MAX() Function 

MySQL MAX() function returns the maximum (highest) value of the specified 

column. It also works with numeric data type only. 

Suppose we want to get maximum working hours of an employee available in the 

table, we need to use the MAX() function as shown in the following query: 

mysql> SELECT MAX(working_hours) AS Maximum_working_hours FROM employee;   

LAST() Function 



This function returns the last value of the specified column. To get the last value 

of the column, we must have to use the ORDER BY and LIMIT clause. It is 

because the LAST() function only supports in MS Access. 

1. mysql> SELECT working_hours FROM employee ORDER BY name DES

C LIMIT 1;     

GROUP_CONCAT() Function 

The GROUP_CONCAT() function returns the concatenated string from 

multiple rows into a single string. If the group contains at least one non-null 

value, it always returns a string value. Otherwise, we will get a null value. 

Etc. 

 

7.a Types of update anomalies with example: 

Anomalies 

1- Update Anomaly: Let say we have 10 columns in a table out of which 2 are 

called employee Name and employee address. Now if one employee changes it’s 

location then we would have to update the table. But the problem is, if the table is 

not normalized one employee can have multiple entries and while updating all of 

those entries one of them might get missed. 

2- Insertion Anomaly: Let’s say we have a table that has 4 columns. Student ID, 

Student Name, Student Address and Student Grades. Now when a new student 

enroll in school, even though first three attributes can be filled but 4th attribute will 

have NULL value because he doesn't have any marks yet. 

3- Deletion Anomaly: This anomaly indicates unnecessary deletion of important 

information from the table. Let’s say we have student’s information and courses 

they have taken as follows (student ID,Student Name, Course, address). If any 

student leaves the school then the entry related to that student will be deleted. 

However, that deletion will also delete the course information even though course 

depends upon the school and not the student. 

 

05 

7.b Armstrong Inference rules: 

 Armstrong's inference rules: 

 IR1. (Reflexive) If Y subset-of X, then X -> Y 

 IR2. (Augmentation) If X -> Y, then XZ -> YZ 

 (Notation: XZ stands for X U Z) 

 IR3. (Transitive) If X -> Y and Y -> Z, then X -> Z 

 IR1, IR2, IR3 form a sound and complete set of inference rules 

 These are rules hold and all other rules that hold can be deduced from these 

05 

https://www.javatpoint.com/mysql-order-by


 Some additional inference rules that are useful: 

 Decomposition: If X -> YZ, then X -> Y and X -> Z 

 Union: If X -> Y and X -> Z, then X -> YZ 

 Psuedotransitivity: If X -> Y and WY -> Z, then WX -> Z 

 The last three inference rules, as well as any other inference rules, can be deduced 

from IR1, IR2, and IR3 (completeness property)  

 

7.c Need for Normalization: 

Normalization is a technique for organizing data in a database. It is important that a 

database is normalized to minimize redundancy (duplicate data) and to ensure only 

related data is stored in each table. It also prevents any issues stemming from database 

modifications such as insertions, deletions, and updates. 

 

Normalization 

 Normalization is the process of organizing the data in the database. 

 Normalization is used to minimize the redundancy from a relation or set of 

relations. It is also used to eliminate the undesirable characteristics like Insertion, 

Update and Deletion Anomalies. 

 Normalization divides the larger table into the smaller table and links them using 

relationship. 

 The normal form is used to reduce redundancy from the database table. 

Types of Normal Forms 

Normal Forms with Example: 

1NF 

2NF 

3NF 

 

 
1NF: 

Disallows 

 composite attributes 

 multivalued attributes 

 nested relations; attributes whose values for an individual tuple are non-atomic 

 Considered to be part of the definition of relation  

10 



 
2NF: 

 A relation schema R is in second normal form (2NF) if every non-prime 

attribute A in R is fully functionally dependent on the primary key 

 R can be decomposed into 2NF relations via the process of 2NF normalization  



 
 

3NF: 

 Definition: 

 Transitive functional dependency: a FD  X -> Z that can be derived 

from two FDs   X -> Y and Y -> Z  

 Examples: 

 SSN -> DMGRSSN is a transitive FD  

 Since SSN -> DNUMBER and DNUMBER -> DMGRSSN hold  

 SSN -> ENAME is non-transitive 

 Since there is no set of attributes X where SSN -> X and X -> 

ENAME  

 A relation schema R is in third normal form (3NF) if it is in 2NF and no non-

prime attribute A in R is transitively dependent on the primary key 

 R can be decomposed into 3NF relations via the process of 3NF normalization  

 NOTE: 

 In X -> Y and Y -> Z, with X as the primary key, we consider this a 

problem only if Y is not a candidate key. 

 When Y is a candidate key, there is no problem with the transitive 

dependency . 

 E.g., Consider EMP (SSN, Emp#, Salary ).  

 Here, SSN -> Emp# -> Salary and Emp# is a candidate key.  



 
 

8.a 

 

The functional dependency is a relationship that exists between two attributes. It typically 

exists between the primary key and non-key attribute within a table. 

X   →   Y   

he left side of FD is known as a determinant, the right side of the production is 

known as a dependent.  

For example:  

Assume we have an employee table with attributes: Emp_Id, Emp_Name, 

Emp_Address.  

10 



Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee 

table because if we know the Emp_Id, we can tell that employee name associated 

with it.  

Trivial functional dependency 

 A → B has trivial functional dependency if B is a subset of A. 

 The following dependencies are also trivial like: A → A, B → B 

Non-trivial functional dependency 

 A → B has a non-trivial functional dependency if B is not a subset of A. 

 When A intersection B is NULL, then A → B is called as complete non-

trivial. 

 

8.b 

 
 

R1={ ACD} 

R2={AB} 

 R3={BC} 

 

R1∪R2∪R3=R=> {ACD}∪{AB}∪{BC}={ABCD}=R 
 

 A B C D 

R1 *  * * 

R2 * *   

R3  * *  

 

 

R1 Join R2=> {ABCD} 
 
A is common Attribute  
A+=ABC 
 A is not a candidate key  
R2 Join R3=>{ABC} 
B is a common attribute  
B+=BC 
 B is not a Candidate Key 

 

All the columns are covered  while joining the relations 

 But Based on Functional dependency does not any candidate key it is not a lossless join 

10 

9.a Transaction: 

 

ACID Properties: 

05 



ACID properties 

 Atomicity 

A transaction is an atomic unit of processing; it is either performed in its entirety 

or not performed at all.  

 Consistency preservation 
A transaction is consistency preserving if its complete execution takes the 

database from one consistent state to another  

 Isolation 

The execution of a transaction should not be interfered with by any other 

transactions executing concurrently  

 Durability 

The changes applied to the database by a committed transaction must persist in 

the database. These changes must not be lost because of any failure  
 

 

9.b Transition diagram of a transaction with explanation: 

 

Transaction states 
• BEGIN_TRANSACTION: marks start of transaction 

• READ or WRITE: two possible operations on the data 

• END_TRANSACTION: marks the end of the read or write operations; start 

checking whether everything went according to plan 

• COMIT_TRANSACTION: signals successful end of transaction; changes can be 

“committed” to DB 

• Partially committed 

• ROLLBACK (or ABORT): signals unsuccessful end of transaction, changes 

applied to DB must be undone 

 

05 



 

 

9.c Need of concurrency control and recovery needed in DBMS: 

Problems when two simple transactions run concurrently: 

 

DBMS has a Concurrency Control sub-system to assure database remains in consistent state 

despite concurrent execution of transactions 

The DBMS must not permit some operations of a transaction T to be applied to the database 

while other operations of T are not, because the whole transaction is a logical unit of 

database processing. If a transaction fails after executing some of its operations but before 

executing all of them, the operations already executed must be undone and have no lasting 

effect. Types of Failures. Failures are generally classified as transaction, system, and media 

failures. There are several possible reasons for a transaction to fail in the middle of 

execution:  

 1. A computer failure (system crash). A hardware, software, or network error occurs in the 

computer system during transaction execution. Hardware crashes are usually media 

failures—for example, main memory failure.   

2. A transaction or system error. Some operation in the transaction may cause it to fail, such 

as integer overflow or division by zero. Transaction failure may also occur because of 

erroneous parameter values or because of a logical programming error.3 Additionally, the 

user may interrupt the transaction during its execution.   

3. Local errors or exception conditions detected by the transaction. During transaction 

execution, certain conditions may occur that necessitate cancellation of the transaction. For 

example, data for the transaction may not be found. An exception condition, such as 

insufficient account balance in a banking database, may cause a transaction, such as a fund 

withdrawal, to be canceled. This exception could be programmed in the transaction itself, 

and in such a case would not be considered as a transaction failure. 

 

  4. Concurrency control enforcement. The concurrency control may abort a transaction 

because it violates serializability ,or it may abort one or more transactions to resolve a state 

of deadlock among several transactions (see Section Transactions aborted because of 

serializability violations or deadlocks are typically restarted automatically at a later time.   

 

5. Disk failure. Some disk blocks may lose their data because of a read or write malfunction 

or because of a disk read/write head crash. This may happen during a read or a write 

operation of the transaction.  6. Physical problems and catastrophes. This refers to an endless 

list of problems that includes power or air-conditioning failure, fire, theft, sabotage, 

overwriting disks or tapes by mistake, and mounting of a wrong tape by the operator. 

 

10 



 
 

10.a The Deadlock and starvation problem occurs when 

Deadlocks and Starvation  
• 2PL can produce deadlocks 

• Deadlock and starvation in 2PL 

 Deadlock occurs when each transaction T in a set of two or more transactions is 

waiting for some item that is locked by some other transaction T’ in the set. 

 

10 



 
Deadlock prevention protocols 

• Conservative 2PL, lock all needed items in advance 

• Ordering all items in the database 

Possible actions if a transaction is involved in a possible deadlock situation 

• Block and wait 

• Abort and restart 

• Preempt and abort another transaction 

Two schemes that prevent deadlock (Timestamp based) 

Wait-die 
 An older transaction is allowed to wait on a younger transaction whereas a younger 

transaction requesting an item from held by an older transaction is aborted and restarted 

with the same timestamp 

Wound-wait 
 A younger transaction is allowed to wait on an older transaction whereas an older 

transaction requesting an item from held by a younger transaction preempts the younger 

transaction by aborting it.  

 

Starvation 
A transaction cannot proceed for an infinite period of time while other transactions in the 

system continue normally 

• Unfair waiting scheme 

• Victim selection  

 

 

10.b Two phase locking techniques for concurrency control: 

Lock  
• A variable associated with a data item 

• Describes status of the data item with respect to operations that can be 

performed on it 

Types of locks 

• Binary locks  

10 



• Locked/unlocked 

• Enforces mutual exclusion 

Multiple-mode locks:  

• Each data item can be in one of three lock states 

1. Read lock or shared lock 

2. Write lock or exclusive lock 

3. Unlock 

 

Two-Phase Locking (2PL) Protocol 

Transaction is said to follow the two-phase-locking protocol if all locking operations 

precede the first unlock operation   

• Expanding (growing) phase 

• Shrinking phase 

During the shrinking phase no new locks can be acquired 

• Downgrading ok 

• Upgrading is not 

 

2PL Example 

 

 

 

 

 

 

• Both T1’ and T2’ follow the 2PL protocol 

• Any schedule including T1’ and T2’ is guaranteed to be serializable  

• Limits the amount of concurrency 
• Two-phase locking protocol (2PL) 

All lock operations precede the first unlock operation 

• Expanding phase and shrinking phase 

• Upgrading of locks must be done in expanding phase and downgrading of 

locks must be done in shrinking phase 

• If every transaction in a schedule follows 2PL protocol then the schedules is 

guaranteed to be serializable. 

• Variants of 2PL 

Basic, conservative, strict, and rigorous 



 

 


