
VTU Question Paper with Solution

17CS741 Natural Language processing Jan/Feb 2021

1.a. There are four types of process analysis:

1.Lexical Analysis

 Lexical Analysis is analysis of words which is the fundamental for natural language.It includes word

level processing i.e, morphological knowledge about the structure and formation of words.

2.Syntactic Analysis

 Syntactic Analysis considers sequence of words that forms a unit or sentence. Decomposition of sentence

into words and identify their relationship.

3.Semantic Analysis

 Semantic Analysis is associated with the meaning of language and meaningful representation of

linguistic input.

4.Discourse Level

 Discourse Level interprets the structure and meaning of language units referred as Discourse Knowledge.

Discourse Knowledge deals with how the meaning of a sentence is determined by preceeding sentence.

Eg: how pronoun refers to the preceeding noun.

It determines the function of sentence in the text. Prgamatic(Sensible) knowledge is needed for resolving

anaphoric(ideas other than text) references.

Eg:I went with Joy___

1b. Challenges of NLP:

There are number of factors that make NLP difficult. It relates to the problems of representation and

interpretation.The language computing requires precise representation ofcontext. It is highly ambiguous and

vague(i.e, achieving such representation can be difficult).

 Inability to capture all the required knowledge : It is impossible to embody all sources of

knowledge that humans use and not possible by humans to write procedures that initiate

language processing.

 Greater difficulty: Identifying its semantics is a difficult task.The principle of compositional

semantics considers the meaning of a sentence to be a composition of the meaning of words.

Also words alone donot make a sentence.

Example1: I do not like icecream

Do not I ice cream like is wrong

Example2: Kabir and Ayan are married.

Kabir and Suha are married.

Both the sentence give different meaning, even though it has same structure.

 Only words along with the syntactic and semantic relation can give meaning to a sentence.

 So, the only way for a machine to learn the meaning of a specific words in a message is by

considering the context defined by the concurring words.

a. Idioms ,Metaphors and Ellipses: These leads to more complexity as it requires

identification of meaning of written text.

Ex: Oldman finally kicked the bucket

b. Quantifier Scoping: Scoping of quantifier is not clear.

c. Ambiguity of natura

d. Incorporating contextual and word level knowledge poses a greater difficulty.

Various Sources of Ambiguity in Natural Languages:

1. Word Level Ambiguity: It is the first level of ambiguity.It involves identification of words that have

multiple meaning associated with them.

Words may be ambiguous. Example1 : can,but -> part of speech-can

 ->meaning –bat

 Example2: bank has two meanings ->1.Financial Institution Sense ->2.River Bank Sense

 These are solved by word sense disambiguation.

2. Structural Ambiguity: The ambiguity exist in the sentence not the words.

Example: Stolen rifle found by tree.

It can be solved by Verb SubCategorization or Probabilistic Parsing

1c. Transformational Grammar :

 Mapping from Deep Structure to Surface Structure by Chomsky in 1957.

 The deep structure can be transformed in number of ways to yield many different surface level

representation.

 Sentence with deep surface level have same meaning and share a common deep level

representation.

Ex: Pooja plays Veena.

Veena is played by Pooja.

Both the above sentences have the same meaning, but different surface structure.The sentences are generated from

some deep structures in which:

Deep subject-Pooja

Deep object-Veena

 Transformational Grammar has three components:

1. Phrase Structure

2. Transformational Rules

3. Morphophonemic Rules-> Match each sentence represented to a string of phonemes.

Each of these components consists of a set of rules.

Phrase Structure Grammar -> consists of rules that generate natural language sentence and

assign a structural description to them

S-> NP+VP

VP->V+NP

NP->Det+Noun

V->Aux+VerB

Det->the, a, an

Verb-> catch, write, eat

Noun -> police , snatcher

Aux-> will,is,can

S=>Sentence

NP=>Noun Phrase

VP=>Verb Phrase

Det=>Determinants

 Sentence that can be generated by these rules are termed as grammatical.

Second component of transformational grammar is set of transformational rules,it lets

transformation of one underlying phrase __ into a derived phrase __, this is applied to the

terminal of the phrases.

 Heterogeneous have more than one symbol on the left hand side, these rules are used to

transform one surface representation into another.

Ex: An active sentence into a passive sentence.

Rules relating active and passive sentences in:

NP1-Aux-V-NP2=> NP2-Aux+be+en-V-by-NP1

=>underlying input having the structure:

N-Aux-V-NP can be transformed to NP-Aux+be –en-V-by+NP

It involves addition of strings ‘be’ and ‘en’ and certain rearrangement of the constituents of a

sentence.

 Transformational Rules can either be obligatory(that which ensures agreement in number of

subjects and verbs) and optional(modifies the structure of a sentence while preserving its

meaning).

2a. Statistical Language model:

 A statistical language model is a probability distribution P(s) over all possible

words sequences.

1. N-gram model

 The goal is to estimate the probability of sentence. By decomposing sentence

probability into a product of conditional probabilities using the chain rule as follows:

 P(S)=P(w1,w2…………wn)

 =P(w1)p(w2/w1)……………….P(wn/w1w2w3……wn-1)

 =π P(wi/hi) where i=1 to n

 Hi is history of word wi defined as w1,w2…….wi-1

To calculate sentence probability, need to calculate the probability of word, given the

sentence of words preceding it.

An n-gram model simplifies the task by approximating the probability of a word given all the

previous words by the conditional probability given previous n-1 words only.

 P(wi/hi)=P(wi/wi-n+1…………wi-1)

Thus , an n-gram model calculate P(wi/hi) by modeling language as marker model of order n-

1 i,e. by looking n-1 words only.

 A model that limits the history to the previous one word only, is termed a bi-gram

(n=1) model.

 Likewise, a model that conditions the probability of a word to the previous two

words, is called a tri-gram (n=2) model.

 Using bi-gram and tri-gram estimate, the probability of sentence can be calculates

as,

 P(S)=π P(wi/wi-1) where i=1 to n

 P(S)=π P(wi/wi-2.Wi-1) where i=1 to n

Ex: The bi-gram approximation of P(east/The Arabian Knights are fairy of the) is

 P(east/the)

Whereas a trigram approximation is

 P(east/of the)

A special word <s> is introduced to mark the beginning of the sentence in bi-gram estimation.

The probability of the first word in a sentence is conditioned as <S>. Similarly in tri-gram

estimation, we introduce two pseudo words.

 <s1> and <s2>

 To estimate there probabilities, the training of n-gram model on the training

corpus. To estimate n-gram parameters using the maximum likelihood estimation technique

using relative frequencies.

Count a particular n-gram in the training corpus to divide it by sum of all n-grams that share

the same prefix.

P(wi/wi-n+1…………wi-1)=C(wi-n+1…….wi-1,wi)/∑ C(wi-n+1………….wi-1,wi)

The sum of all n-grams that share first n-1 words is equal to the count of the common prefix

wi-n+1………….wi-1

P(wi/wi-n+1…………wi-1)=C(wi-n+1…….wi-1,wi)/C(wi-n+1………….wi-1)

The model parameter we get using these estimate, maximizes the probability of the training

set T given the model M i,e. P(T/M).

Ex: Training set:

 There is a big garden

 Children play in the garden

 They play inside beautiful garden.

Bigram model:

P(the/<S>)=0.67= 2 /3

P(Arabian/the)=0.4 = 2 /5

P(Knights/Arabian)=1.0=== 2 /2

P(are/these)=1.0

P(the/are)=0.5

P(fairy/the)=0.2

P(tales/fairy)=1.0

P(of/tales)=1.0

P(the/of)=1.0

P(east/the)=0.2

P(stories/the)=0.2

P(of/stories)=1.0

P(are/Knights)=1.0

P(translated/are)=0.5

P(in/translated)=1.0

P(many/in)=1.0

P(language/many)=1.0

Test sentence(S) : They play in big garden

P(the/<S>)*P(Arabian/the)*P(Knights/Arabian)*P(are/these)*P(the/are)*P(fairy/the)*P(tale

s/fairy)*P(of/tales)*P(the/of)*P(east/the)*P(stories/the)*P(of/stories)*P(are/Knights)*P(tra

nslated/are)*P(in/transalted)*P(many/in)*P(language/many)

=0.67*0.4*1.0*1.0*0.5*0.2*1.0*1.0*1.0*0.2

=0.0067

2b. The applications where NLP is used are:

1. Machine Translation->Automatic translation of text from one human language to another.It

is necessary to have an understanding of words and phrases, grammars of two languages,

semantics of world knowledge.

2. Speech Recognition->mapping Acoustic Speech Signals to a set of words.The difficulties

involved are due to the wide variations in the pronunciation of words, homonyms(Ex: dear

and deer),acoustic ambiguities in the sense of hearing(Ex: interest and in the rest).

3. Speech Synthesis->Automatic production of speech.Systems can read out mails on

telephone or even read out a story book.

4. Natural Language interfaces to databases->Allows quering a structured database using

natural language sentence.

5. Information Retrieval(IR)->It is done by identifying documents relevant to a users query.

Application in Information Retrieval includes:

1. Indexing(Stop word elimination,stemming and phrase extraction,etc).

2. Word Sense Diasmbiguation

3. Query Modification

4. Knowledge Based

 WordNet , LDOCE(Longman Dictionary Of Contemporary Engkish),Roget’s

Thesaurus.

6. Information Extraction(IE)->Captures and Outputs factual information contained within a

document.Similar to Information Retrieval, Information Extraction also responds to a user’s

information need. The users information is not specified as keyword query but specified as

pre defined database schema or templates.

 An IR system identifies a subset of documents in a large repository of text databases.

Ex: In a library scenario, a subset of resources in a library.

 An IE system identifies a subset of information within a document that fits the

predefined template.

7. Question Answering->On a question and a set of documents, a question answering system

attempts to find the preciseanswer , or atlesat the presence of portion of text in which the

answer appears.

 It’s not like the IR system, it returns the whole document that seems relevant to the

user’s query.

 It’s also different from IE system, --- that the content that is to be extracted is

unkown.

 So it has benefits from IE to identify entities the text and it requires more NLP ,------

it need not only precise analysis of question and portions of text, but also semantic

as wwll as background knowledge to answer certain type of questions.

8. Text Summarization->It deals with creation of summaries of documents and involves

syntactic, semantic discourse level(i.e, interpret the structure and meaning of large units)

processing.

2c. The n-gram model suffers from data sparseness problem. An n-gram that does not occur

in the training data is assigned zero probability, so that even a large corpus has several zero

entries in the bigram matrix.

A number of smoothing techniques have been developed to handle the data sparseness

problem.

The word smoothing is used to denote these techniques. Because they tend to make

distributions more uniform by moving the extreme probabilities towards the average.

1. Add one smoothing:

 It adds a value of one to each n-gram frequency before normalizing them into

probabilities. Thus the conditional probability becomes:

P(wi/wi-n+1…………wi-1)=C(wi-n+1…….wi-1,wi)/C(wi-n+1………….wi-1)+v

V is the vocabulary size i.e. size of the set of all the words being considered.

2. Good Turing smoothing:

 Adjusts the frequency of an n-gram using the count of n-grams having a frequency

of occurrence f+1.

If converts the frequency of an n-gram from f to f*

f*=(f+1)nf+1/nf

nf - number of n-gram that occur exactly f times in the training corpus.

Ex: Occur 4 times is 25,108 and the number of n-gram that occur 5 times is 20,542 ,smoothing

count for 5 will be

 20542/25108*5=4.09

2. Caching:

 The frequency of n-gram is not uniform across the text segments or corpus.

Certain words occur more frequently in certain segments and rarely in others.

ex: The frequency of the word ‘n-gram’ is high, whereas it occurs rarely. The basic n-gram

model ignores this sort of variation of n-gram frequency.

The cache model combines the most recent n-gram frequency with the standard n-gram

model to improve its performance locally.

3a. Finite state transducer is a 6 tuple

simple transducer that accepts two strings,hot and cat maps them into cot and bat.

 FSA encode regural languages and regular relation.

-Regular relation is the relation between regular languages.

-The regular language encoded pn the upper side of a FST is called upper language,lower side is lower

language.
 If T->transducer

 S->string

then T(S)->represent the set of strings encoded by T such that the pair (s,t) in is relation.

FST's are closed under:

 *union

 *cocatenation

 *composition

 *kleene closure

 Not closed under:

 *Intersection

 *complementation
Two step morphological parser

->Split the words up into its possible components

 eg:bird+s out of birds->morpheme boundries

:Spelling rules are cnsidered

->2 possible ways of splitting up:

 boxes->boxe+s,box+s

1)boxes->boxe+s

 Assume,

 boxe-stem

 s-suffix

2)boxes->box+s
 box-stem

 s- suffix

 e- has been introduced due to the spelling rule

=>output is the concatenation of morphemes i.e stem+affixes

FST

=>FST represents the information the the comparative form of adjective less is lesser,e(belons to) here is empty

string.

=>The automation is inherently bi-directional the same transducer can be used for analysis->surface i/p upword

 for generation->lexical

i/p,downword application
In boxes->box+s

 used a lexicon to look up categories of the stems and meaning of the affixes.

 bird+s will be mapped to bird+N+PL

 box+s will be mapped to box+N+PL

so,boxe+s is incorrect way of splitting boxes so discarded.

But,spouses=>spouse+s

 parses=>parse+s

->It's correct ,in this orthographic rules are used to handle these spelling variations,

=>SO,one of the spelling rules says:

 add e after -s,-z,-x,-ch,-sh
 before the s-dish->dishes,box->boxes

Each of these steps can be implemented with the help of transducer.

 ->Two transducers are needed:

1)One that mas th surface form to the intermediate form

2)another that maps the intermediate form to lexical form.

 Develop an FST based morphological parser for singular and plural nouns in English

->The plural form of regular nouns usually end with -s or -es

However a word ending in 's' need not be plural like miss,ass

->One of the required translatins is the deletion of the 'e' when introducing a morpheme boundary.This deletion

is usually required for words ending in 'xes,ses,zes' eg:(suffixes,boxes)

Simplified FST,mapping english nouns to the intermediate form

->Next step is to develop a transducer,that does the mapping from the intermediate level to the lexical level.
->Thee input to transducer has one of the following forms:

 *Regular noun stem,eg:bird,cat

 *Regular noun stem +s,eg:bird+s

 *Singular irregular noun stem,eg:goose

 *Plural irregular nun stem,eg:geese

->First case,the transducer has to map all symbols of the stem to themselves and then output N and sg

->Second case ,it has to map all symbols of the stem of the stem,to themselves,but then output N replaces PL

with S

->Third case ,it has to do the same as in the first case

->Fourth case,the transducer has rto map the irregular plural noun stem to the corresponding singular stem.

(eg:geese to goose) and then it should add N and PL

The mapping from state 1 to state 2,3,4 is carried out with the help of transducer encoding a lexicon

-The transducer implementing the lexicon maps the individual regular and irregular noun stems to their correct

noun stem,replacing labels like regular noun form,etc.

-This lexicon maps the surface form geese,which is an irregular noun to its correct stem goose in the following

way:

 g:g e:o e:o s:s e:e

-Mapping for the regular surface form of bird

 b:b i:i r:r d:d

-Representing pairs like a:a with a single letter,these two representations are reduced to

 g e:o e:o s e and b i r d

-Composing this reducer with the previous one,we get a single two-level transducer with one input tape and one
output tape.

-This maps plural nouns into the stem plus the morphological marker+pl and singular nouns into the stem plus

the morpheme+sg

-Thus a surface word form birds will be mapped to bird+ N+PL

 b:b i:i r:r d:d e:n s:pl

-Each letter maps to itself,while e maps to morphological feature+N,and s maps to morhological feature pl.

A transducer mapping nouns to thier stem and morphological features

Spelling Error Detection and Correction:

-In computer based information system errors of typing and spelling causes variation between strings

-These errors are investigated and that are:

 *Single character omission

 *Insertion
 *Substitute

 *Reversal

=>Most common typing mistake

-Domearu (1964) reported that over 80% of the typing errors were single_error misspelling

 1)Substitution of a single letter

 2)omission of of a single letter

 3)Insertion of of a single letter

 4)Transposition of two adjacent letters

3b.Parts of speech tagging methods has 3 categories.

1. Rule based(linguistic)

2. Stochastic (data driven)

3. Hybrid.

Rule Based Taggers

 Use hand coded rules to assign tags to words. These rules use a lexicon to obtain a list of candidate tags

and then use rules to discard incorrect tags.

 Have a 2 stage architecture:

 First stage is simply a dictionary look up procedure, which returns a set of potential tags and

appropriate syntactic features for each word.

 Second stage uses a hand coded rules to discard contextually illegitimate tags to get a single part of

speech for each word.

Eg: The noun-verb ambiguity

 The show must go on.

The potential tags for the word show in this sentence is {VB,NN}.

 If preceding word is determine THEN eliminate VB tags. This rule simply disallows verb after a

determine using this rule the word show is noun only.

In addition to contextual information, many taggers use morphological information to help in the

disambiguation process.

 If word ends in _ing and preceding word is a verb THEN label it a verb(VB).

 Capitalization information can be utilized in the tagging of unknown nouns.

 Rule based tagger require supervised training

 Instead rules can be induced automatically

 To induce rules, untagged text is run through a tagger

 The output is then manually corrected

 The corrected text is then submitted to the tagger, which learns correction rules by comparing the 2 sets

of data. This process may be repeated several times.

 TAGGIT (Greene and Rubin 1971) :- Initial tagging of Brown Corpus(Francis and Kucera 1982). Rule

based s/m, it uses 3,300 disambiguation rules and able to tag 77% of the words in the Brown Corpus

with their correct part of speech.

 Another rule based tagger is ENGTWOL (voutilainen 1995)

Advantages:

 Speed, deterministic than stochastic

 Arguments against them is the skill and effort required in writing disambiguation rules

 Stochastic taggers require manual work if good performance is to be achieved

 Rule based, time is spent in writing a rule set

 Stochastic, time is spent developing restriction on transitions and emissions to improve tagger

performance

Disadvantages:

 It’s usable for only one language. Using it for another one requires a rewrite of most of the

programs.

2) Stochastic tagger

 Standard stochastic tagger is HMM tagger algorithm

 Markov model applies the simplifying assumption that the probability of a chain of symbols can be

approximated in terms of its parts of n-grams

 Simplest n-gram model is unigram model, which assigns the most likely tag to each token

 Unigram model needs to be trained using a tagged training corpus before it can be used to tag data

 The most likely statistics are gathered over the corpus and used for tagging

 The context used by the unigram tagger is the text of the word itself

Ex: It will assign the tag JJ for each occurrence of fast is used as an adjective than used as noun, verb

or adverb.

 She had a fast[noun]

 Muslims fast[verb] during Ramadan

Those who were injured in the accident need to be helped fast[adverb]

 Bigram tagger uses the current word and the tag of previous word in tagging process

 As the tag sequence “DT NN” is more likely than the tag sequence “DD JJ”

 In general, n gram model considers the current word and the tag of the previous n-1 words in assigning

a tag to a word

 The context considered by a tri-gram model. The shaded area represents context.

Tokens Wn-2 Wn-1 Wn Wn+1

Tags tn-2 tn-1 tn tn+1

 Context used by trigram tagger.

 So, far we have considered how a tag is assigned to a word given the previous tag

 The objective of a tagger is to assign a tag sequence to a given sentence

HMM uses 2 layers of states:

1) Visual layer corresponds to the input words

2) Hidden layer learnt by the s/m corresponding to the tags

 While ragging the input data, observe only the words the tags are hidden

 States of the model are visible in training, not during the tagging task

 HMM makes use of lexical and bigram probabilities estimated over a tagged corpus in order to

compute the most likely tag sequence for each sentence

 One way to store the statistical information is to build a probability matrix. This conations both the

probability that an individual word belongs to a word clan as well as the n-gram analysis eg: For a

bigram model, the probability that a word of class X follows a word of class Y. This matrix is then

used to drive the HMM tagger while tagging a unknown text

Given a sequence of words, the objective is to find the most probable tag sequence for the sentence

 Let w be the sequence of words.

 W=w1,w2,w3,,,,,,wn

 The task is to find the tag sequence

 T=t1,t2,t3,,,,,,tn

Which maximizes P(T/W) i.e,,

 T’= argmaxT P(T/W)

Applying Bayes Rule, P(T/W) can be the estimated using the expression:

 P(T/W)= P(T/W) *P(T)/P(W)

 The probability of applying for the word sequence, P(W) remains the same for each tag sequence, we

can drop it. So, the expression:

T’= argmaxT P(W/T) * P(T)

 Using the Markov assumptions, the probability of a tag sequence can be estimated as the product of the

probability of its constituent n-grams, i.e,,

P(T)=P(t1)*P(t2/t1)*P(t3/t2/t1)…..*P(t n/t1,,,,,tn-1)

 P(W/T) is the probability of seeing a word sequence, given a tag sequence.

 Ex: It’s assigning the probability of seeing “ The egg is rotten” given ‘DT NNP VB JJ’ we make the

following two assumptions:

 The words are independent of each other

 The probability of a word is dependent only on it’s tag.

Using the assumptions, we obtain

P(W/T)=P(w1/t1)*P(w2/t2)…….P(wi/ti) *……P(wn/t n)

 i.e,, P(W/T) = πn
i=1 P(wi/ti)

so, P(W/T)*P(T) = πn
i=1 P(wi/ti) * P(t1)*P(t2/t1)*P(t3/t2/t1)…..*P(t n/t1,,,,,tn-1)

Approximately the tag history using only the two previous tags, the transition probability, P(t) becomes

 P(T)= (t1)*P(t2/t1)*P(t3/t2/t1)*…..*P(tn /tn-2 tn-1)

Hence, P(t/w) can be estimated as

P(w/t)*P(T) = πn
i=1 P(wi/ti) * P(t1)*P(t2/t1)*P(t3/t2/t1)*…..* P(tn /tn-2 tn-1)

= πn
i=1 P(wi/ti) * P(t1)*P(t2/t1)*πn

i=3 P(ti /ti-2 ti-1)

We estimate these probabilities from relative frequencies via maximum likelihood estimation.

 P(ti /ti-2 ti-1) = C(ti-2 , ti-1 , ti)

 C(ti-2 , ti-1)

 P(wi/t i) = C(wi , ti)

 C(t i)

Where C(ti-2, ti-1 , ti) is the number of occurrences of t i , followed by t i-2 , t i-1.

Hybrid Taggers:

Hybrid approaches to tagging combine the features of both the rule based and stochastic approaches .They use

rules to assign tags to words .Like the stochastic taggers ,this is a machine learning techniques and rules are

automatically induced from the data. Transformation-based learning (TBL) of tags ,also known as Brill tagging

,is a example of hybrid approach . Tranformation-based error-driven learning has been applied to a number of

natural learning problems, including parts-of-speech tagging, speech generation ,and syntactic parsing .

The input to Brill's TBL tagging algorithm is a tagged corpus and a lexicon .The initial state annotator uses the

lexicon to assign the most likely tag to each word as the start state.An ordered set of transformational rules are

are applied sequentially.The rule that that result in the most improved tagging is selected.

A manually tagged corpus is used as reference for truth. The process is iterated until some stopping criteria is

reached ,such as when no significant information is acheived over the previous iteration. At each iteration ,the

tranformation that results in the highest score is selected.The output of the algorithm is a ranked list of learned

transformation that transform the initial tagging close close to correct tagging .

New text can then be annotated by first assigning the most frequent tag and then applying the ranked list of

learned tranformation in order.

?????fig:TBL Learner

TBL tagging algorithm:

Input: Tagged corpus and lexicon(with most frequent information)

step1: Label every word with most likely tag(from dictionary)

step2: Check every possible transformation and select one which most improves tagging

step3: Re-tag corpus applying the rules

Repeat 2-3 Until some stopping criterion is reached

RESULT: Ranked sequence of tranformation rules

Each tranformation is a pair of re-write rule of the form t1->t2 and a contextual condition .In order to limit the

set of transformations ,a small set of templates is constructed .Any allowable

tranformation is an instantiation of these templates.

@ Examples of transformation templates and rules learned by the tagger

change tag a to tag b when :

1. The preceding (following) word is tagged z.

2. The preceding (following) word is w.

3. The word two before (after) is w.

4. One of the preceding two words is w.

5. One of the two preceding (following) words is tagged z.

6. The current word is w and the preceding (following) word is x.

7. One of the previous three words is tagged z.

change tags contextual condition Example

 from to

1. NN VB The previous tag is TO To/TO fish/NN

2. JJ RB The previous tag is VBZ runs/VBZ fast/JJ

The rules are applied in TBL tagger,

Example::Assume that in a corpus,fish is the most likely to be a noun.

 P(NN/fish) = 0.91

 P(VB/fish) = 0.09

now,consider the following two sentences and their initial tags :

 I/PRP like/VB to/TO eat/VB fish/NNP

 I/PRP like/VB to/TO fish/NNP

The most likely tag for fish in NNP,the tagger assigns this tag to the word in both sentence .In the second case,it

is a mistake .

After initial tagging when the tranformation rules are applied ,the tagger learns a rule that applies exactly to this

mistagging of fish.Change NNP to VB of teh previous tag in TO.

As the contextual condition is satisfied ,this rule with change fish/NN to fish/VB:

 like/VB to/TO fish/NN->like/VB to/TO fish/VB

The algorithm can be made efficient by indexing the words in a trainig corpus using potential tranformation

.Most of the work in part-of-speech is done for English and some European languages.In other languages,part-

of-speech tagging and

NLP research in general ,is constrained by the lack of annotated corpus.

A few parts of speech tagging systems reported in recent years use morphological analysers along with a tagged

corpus.

eg: Bengali tagger based on HHH developed by Sandipan et.al(2004)

 Hindi taggers developed by Smriti et.al(2006)

Smriti et.al used a decision tree based learning algorithm.

3c. Minimum Edit Distance of EXECUTION and INTENTION

4a. Cocke Younger Kosami

Dynamic programming parsing algorithm

Bottom up approach

Build parse tree incrementally

Each entry based on previous entry.

CNF

A->BC

A->w

4b. Top down and Bottom up parser

1. Top down parsing

 Starts its search from the root node S and works downward towards the

leaves

 The input can be derived from the designated start symbol S, of the

grammar

 The next step is to find all sub trees which can start with S

 To generate the sub trees of all second level search expand the root node

using all the grammar rules with S on their left hand side

 Each non-terminal symbol in the resulting sub trees is expanded next

using the grammar rules having a matching non – terminal symbol on

their left hand side

 The right hand side of the grammar rules provide the nodes to be

generated, which are then expanded recursively

 As the expansion continues, the tree grows downward and eventually

reaches a state where the bottom of the tree consists of part of speech

categories

 All trees whose leaves do not match words in the input sentence are

rejected, learning only trees that represents successful parses, matches

exactly with the words in the input sequence.

S NP VP

SVP

NP Det Nominal NP noun

NP Det noun PP

NominalNoun

Nominal Noun nominal

VP Verb NP

VP Verb

PP preposition NP

Detthis/that/a/the

Verb sleep/sing/saw/open/paint

Prepositionfrom/with/on/to

Pronounshe/he/they

 Sample Grammar

Consider the grammar shown in the table and the sentence. “paint the

door”

A top down search begins with the start symbol of the grammar. Thus the

first level(ply) search tree consists of a single node labeled S.

The grammar in table has two rules with S on their left hand side. These

rules are used to expand the tree, which gives us two partial trees at the

second level search.

The third level is generated by expanding the non – terminal at the

bottom of the search tree is the previous ply. Due to space constraints,

only the expansion corresponding to the left most non- terminals has been

shown .

The subsequent steps in the parse are left. The correct parse tree is

obtained by expanding the fifth parse tree by the third level.

 Level 1: S

 Level 2: S S

 NP VP VP

 S S S S S S

NP VP NP VP NP VP NP VP VP VP

det Nominal pronoun Det noun PP noun verb NP verb

 S

 VP

 Verb NP

 Paint Det Nominal

 the Noun

 door

 A top down search space

2. Bottom – up parsing

 Starts with the words is the Input sentence and attempts to construct a

parse tree is an upward direction towards the root

 At each step, the parser looks for rules in grammar where the right hand

side matches some of the portions in the parse tree constructed and

reduces it using the left hand side of the production

 The parse is considered successful of the parser reduces the tree to the

start symbol of the grammar.

Level 1: Pain the door

Level 2: Noun Det Noun Verb Det Noun

 Paint the door paint the door

Level 3: Nominal Nominal VP Nominal

 Noun Det Noun Verb Det Noun

 Paint the door paint the door

Level 4: NP NP

 Nominal Nominal VP Nominal

 Noun Det Noun Verb Det Noun

 Paint the door paint the door

 S

 VP

 Verb NP

 Paint Det Nominal

 The Noun

 door

 Top down search starts generating trees with the start symbol of the

grammar, it never wastes time exploiting a tree leading to a different root

 It wastes considerable time exploiting S trees that eventually result in

words that are inconsistent with the input, because a top down parser

generates trees before seeing the input

 Bottom up parserNever explores a tree that does not match the input .

However it wastes time generating trees that have no chance of leading to

an S-rooted tree.

4c. Probabilistic Parsing

• Statistical parser- stochastic tagger-hand parsed text

• Assigning probabilities to possible parses of a sentence Most likely

• Find, Assign, Return

• PCFG

• Probabilistic parser assign probabilities to parses.

• A->α[p]

• PCFG is defined by pair(G,f) where G is a CFG and f is a positive function defined

over the set of rules such that, the probabilities associated with rules expanding

particular non terminal is 1

• ∑f(A->α)=1

5a.

5b.

5c

6a.

6b.

7a.

7b.

7c.

8a.

8b.

9a.

 9b.

.

9c.

.

10.a.

10b.

