
Internal Assessment Test 1 – May 2021

Object Oriented Concepts Sub Code: 18CS45 Branch: ISE

21/05/2021 Duration: 90 min’s Max Marks: 50 Sem / Sec: IV / A, B, C

Q.No

.

Solution and Scheme Mark s

1a. Compare and contrast between procedure oriented program and object

oriented program

6M

Ans Sl.

No.

POP OOP

Program

Organizati

on

Program is divided into

small parts called functions

Program is divided

into small parts

called objects
Importanc

e

Importance is not give to

data but to functions

Importance is give

to data rather than

procedures
Approach POP follows top down

approach

OOP follows

bottom up approach
Access

Specifier

Does not have any access

specifier

Has three access

specifiers namely

public, private and

protected
Data

Moving

Data can move freely from

function to function in the

system

Objects can move

and communicate

with each other
Maintaina

bility

To add new data and

function it is not easy

Provides an easy

way to add new data

and functions
Data

Access

Function uses global data for

sharing that can be accessed

freely from function to

function in the system

Objects use local

data and can be

accessed in a

control manner.
Data

Hiding

No data hiding is possible,

hence security is not

possible.

Provides data hiding

hence secured

programming is

possible
Overloadin

g

Polymorphism is not

possible

Polymorphism is

possible
Examples C, Visual Basic,

FORTRAN, Pascal

C++, JAVA,

VBNET, C# .NET

Any 6 Correct Points carries 6 marks

1b Define 4 pillars of object oriented concepts.

4M

Ans Encapsulation:

Encapsulation is wrapping of data and function or method into a single unit. It is the

mechanism that binds together code and data it manipulates, and keeps both safe from

outside interference and misuse. Encapsulation is a protective wrapper that prevents

code and data from being arbitrarily accessed by other code defined outside the

wrapper. Access to the code and data inside the wrapper is tightly controlled through

a well defined interface. The power of encapsulated code is that everyone knows how

to access it and thus can use it regardless of the implementation details and without

fear of unexpected side effects.[1M]

Data Abstraction:

Abstraction means displaying only essential information and hiding the details. Data

abstraction refers to providing only essential information about the data to the outside

world, hiding the background details or implementation. [1M]

3 Inheritance:
Inheritance is the process by which one object acquires the properties of another

object. Inheritance supports the concept of hierarchical classification. For example, a

Golden Retriever belongs to the class - dog, dog in turn is part of the class mammal,

and mammal is under the larger class animal. Mammal is called the subclass of

animals and animals is called the mammal’s superclass.[1M]

4 Polymorphism:

Polymorphism, as the name suggests, is the phenomena by virtue of which the same

entity can exist in two or more forms. In OOPS, functions can be made to exhibit

polymorphic behaviour. Functions with different set of formal arguments can have

the same name. Polymorphism is of two types: static and dynamic[1M]

4M

2 a. Differentiate between class and structure. With an example, explain

the syntax for defining, creating and accessing a class and structure.

5M

Ans
Sl.

No.
CLASS STRUCTURE

1
The members of a class are

private by default.

The members of a structure are

public by default.

2

Classes are of reference

types.

Structs are of value types

3

A Class can inherit from

another class.

A Struct is not allowed to

inherit from another struct or

class.

[1M]

5M

Ans Example Structure. 2M

struct Distance { // creation of structure

int iFeet;

float fInches;

void setFeet(int x) {

iFeet=x; }

int getFeet() {

return iFeet; }

void setInches(float y) {

fInches=y; }

float getInches() {

return fInches; }

};

int main() {

 Distance d1,d2; // creating struct variable

 d1.setFeet(2);

 d1.setInches(2.2);// accessing functions

 d2.setFeet(3);

 d2.setInches(3.3);

 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;

 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;

}

Output
2 2.2

3 3.3

5M

 Example Class. 2M

#include<iostream>

Using namespace std;

class Distance // creating class

{

int iFeet;

float fInches;

public:
void setFeet(int);

int getFeet();

}

void Distance::setFeet(int x) { // defining member functions

iFeet=x; }

int Distance::getFeet() {

return iFeet; }

int main() {

 Distance d1,d2; // creating object of class to access class //members

 d1.setFeet(2);

 cout<<d1.getFeet()<<endl

}

Note: Any example which explain the syntax for defining, creating and

accessing a class and structure.

2b Define Inline function. Explain with syntax and example program. 5M

Ans An inline function is a function whose compiled code is ‘in line’ with the

rest of the program. That is, the compiler places a copy of the code of that

function at each point where the function is called at compile time. With

inline code, the program does not have to jump to another location to execute

the code and then jump back. Inline functions, thus, run a little faster than

regular functions. [2M]

 Example, : use of inline function to return max of two numbers

Any example code(3Marks)

#include <iostream>

using namespace std;

inline int Max(int x, int y)

{

 return (x > y)? x : y;

}

// Main function for the program

int main()

{

 cout << "Max (20,10): " << Max(20,10) << endl;

 cout << "Max (0,200): " << Max(0,200) << endl;

 cout << "Max (100,1010): " << Max(100,1010) << endl;

}

OutPut:

Max (20,10): 20

Max (0,200): 200

Max (100,1010): 1010.

3a What is function overloading? Explain with syntax

Ans The feature in C++ which allows two or more functions to have the same

name, but with different signatures is called Function Overloading.

Signature of a function means the number, type, and sequence of formal

arguments of the function.

The compiler decides which function is to be called based upon the number,

type, and sequence of parameters that are passed to the function.

Since function prototyping is mandatory in C++, it is possible for the C++

compiler to support function overloading.

Function overloading enables us to have two functions with the same name

and same signature in two different classes.

// Example program to illustrate function overloading using class

#include<iostream>

using namespace std;

class A

{

Public:

void show();

void show(int); //function show() overloaded!!

};

void A::show()

3M

{

cout<<“Hello\n”;

}

void A::show(int x)

{

cout << x << endl;

}

int main()

{

A A1;

A1.show(); //first definition called

A1.show(3); //second definition called

}

Output

Hello

3

3b Write a C++ program to find volume of cube (s * s * s), volume of a

cylinder (PI * r * r * h), rectangular box (l * b *h) by accepting

input from keyboard and printing the volume on console using the

method volume() .

7M

Ans

Program[6M] output [1M]

 #include <iostream>

using namespace std;

const float pi=3.14;

float vol(float l) //Cube

{

return l*l*l;

}

float vol(float r,float h) //Cylinder

{

return (pi*r*r*h);

}

float vol(float l,float b,float h)// rctangular box

{

return (l*b*h);

}

int main()

{

 float l,r,b,h,t;

cout<<"\nEnter the Length of Cube: \n";

cin>>l;

t=vol(l);

cout<<"\n\nVolume of Cube:"<<t;

cout<<"\n\nEnter the Radius & Hieght of Cylinder: \n";

cin>>r>>h;

t=vol(r,h);

7M

cout<<"\n\nVolume of Cylinder: "<<t;

cout<<"\n\nEnter the Length,Breadth & Hieght of Rectangle: \n";

cin>>l>>b>>h;

t=vol(l,b,h);

cout<<"\n\nVolume of Rectangle: "<<t;

 return 0;

}

4a

Explain how one can bridge two classes using friend function. Write a

C++ program to find the sum of two numbers using bridge friend

function add().

10M

Ans Friend function can be used as bridges between two classes. To bridge two

classes with a function, the function should be declared as a friend to both the

classes. Then the friend function can access private data of both classes. C++

[2M]

program to find the sum of two numbers using bridge friend function

add()

 #include <iostream>

using namespace std;

class B ; // Forward declaration

class A

{

 int a;

 public:

 A()

 {

 a = 100;

 cout << "Private member of class A is " << a << endl;

 }

 friend void add(A,B);

};

class B

{

 int b;

 public:

 B()

 {

 b = 200;

 cout << "Private member of class B is " << b << endl;

 }

 friend void add(A,B);

10M

};

void add (A Aobj, B Bobj)

{

 cout << "Sum of private members of class A and B = " << (Aobj.a +

Bobj.b) << endl;

}

int main()

{

 A A1;

 B B1;

 add (A1, B1);

 return 0;

}

Program with proper syntax 7M

Output : 1M

Private member of class A is 100

Private member of class B is 200

Sum of private members of class A and B = 300

5a. What is reference variable? Explain. Also write a program in C++ to

swap two int values and display the values before and after swapping

using reference variable and using call by reference.

10M

Ans

A reference variable can be defined as a reference or alias for an existing

variable. It shares the memory location with an existing variable.

The syntax for declaring a reference variable is as follows -

<data-type> & <ref-var-name> = < existing-var-name>;

Example:

int & iRef = x;

iRef is a reference to x. This means that although iRef and x have separate

entries in the OS, their addresses are actually the same. Thus a change in the

value of x will naturally reflect in iRef and vice versa.

Reference variables must be initialized at the time of declaration otherwise

the compiler will not know what address it has to record for the reference

variable. After their creation, [2M]

C++ Program to swap two integers using reference variable

[Program 3M]
#include <iostream>

using namespace std;

void swap(int &,int &);

int main()

10M

{

 int a = 10, b = 20;

 cout << "Before swapping” << endl;

cout << “Value of a is " << a <<endl;

 cout << "Value of b is " << b << endl;

 swap (a,b);

cout << "After Swapping " << endl;

 cout << "Value of a is " << a << endl;

 cout << "Value of b is " << b << endl;

}

void swap (int & a, int & b)

{

 int temp;

 temp = a;

 a = b;

 b = temp;

 cout << "Inside swap function after swapping " << endl;

 cout << "Value of a is " << a << endl;

 cout << "Value of b is " << b << endl;

}

OutPut: 1M

Before swapping

Value of a is 10

Value of b is 20

Inside swap function after swapping

Value of a is 20

Value of b is 10

Using Call By Reference[Program 3M]

#include <iostream>

using namespace std;

void swap(int *xp, int *yp);

int main()

{

 int x , y;

 cout<<"Enter Value of x "<<endl;

 cin>>x;

 cout<<"Enter Value of y "<<endl;

 cin>>y;

 swap(&x, &y);

 cout<<"\nAfter Swapping: x =" << x <<"and"<< "y is = "<< y<<endl;

 return 0;

}

void swap(int *xp, int *yp)

{

 int temp = *xp;

 *xp = *yp;

 *yp = temp;

}

Output[1M]

Enter Value of x

6

Enter Value of y

4

After Swapping: x =4andy is = 6

6a. Write a C++ program to define a class employee having members Emp-

id, Emp-name, basic salary and functions accept() and display().

Calculate DA=25% of basic salary, HRA=800, I-tax=15% of basic salary.

Display the payslip using appropriate output format.

10M

Ans

Program Code 8M:

#include<iostream>

using namespace std;

class Employee

{

 int eid;

 char ename[100];

 float basic_salary, hra, da, i_tax, net_salary;

 public:

 void accept_details()

 {

 cout<<"\n Enter Employee Id : ";

 cin>>eid;

 cout<<"\n Enter Employee Name : ";

 cin>>ename;

 cout<<"\n Enter Basic Salary : ";

 cin>>basic_salary;

 hra = 800;

 da = 0.25 * basic_salary;

 i_tax = 0.15 * basic_salary;

 net_salary = basic_salary + da + hra - i_tax;

 }

 void display_details()

 {

 cout<<"\n ----------------------- ";

 cout<<"\n Employee Id : "<<eid;

 cout<<"\n Employee Name : "<<ename;

 cout<<"\n Basic Salary : "<<basic_salary;

 cout<<"\n HRA : "<<hra;

 cout<<"\n DA : "<<da;

 cout<<"\n I-Tax : "<<i_tax;

 cout<<"\n Net Salary : "<<net_salary;

 }

};

int main()

{

 Employee e;

 e.accept_details();

 e.display_details();

 return 0;

}

Output: 2M

10M

