

USN

Internal Assessment Test 1 – May 2021

Sub: Software Testing-Scheme and Solutions Sub Code:
18CS62/17

CS62
Branch: ISE

Date: 21/05/2021 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI A,B&C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1a) Differentiate Error, Fault, and Failure with example

Definition:2 marks

Example: 2 marks

Error Fault Failure

Human Mistake, or bugs A fault is the result of

an error. fault is the

representation of an

error, where

representation is the

mode of expression,

such as narrative text,

dataflow diagrams,

hierarchy charts, source

code, and so on.

When fault code is

executed failure will

occur.

e.g; Error in business

logic in Requirements.

discount 15% instead of

10% for purchase Rs.

10000

Fault in SRS and in

discount calculation

Wrong reduction value

given for customer

[4] CO1 L2

1b) What is the use of Venn diagram in testing? Explain with diagram.

Point 1: 1mark

Two diagrams and Explanation: 2.5+2.5 = 5 marks

• Venn Diagrams are helpful in identifying the test cases. Venn Diagrams helps to find

certain specified behaviors have not been programmed and certain programmed

(implemented) behaviors have not been specified. These correspond to faults of

commission and to errors that occurred after the specification was complete.

•

Explanation:1.5 marks

[6] CO1 L2

Explanation: 1.5 marks

2a) Compare specification testing with code based testing

4 points: 4 marks

Specification Testing Code Based Testing

This is also called black box testing, in

which the content (implementation) of

the black box is not known, and the

function of the black box is understood

completely in terms of its inputs and

outputs

it is sometimes called white box (or

even clear box) testing.

The essential difference is that the

implementation(of the black box) is

known and used to identify test cases.

the only information used is the specification

of the software.

code-based testing uses the program

source code (implementation) as the

basis of test case identification.

Advantages (1) they are independent of how

the software is implemented, so if the

implementation changes, the test cases are

still useful; and (2) test case development

can occur in parallel with the

implementation, thereby reducing the overall

project development interval.

The ability to “see inside” the

black box allows the tester to

identify test cases on the basis of

how the function is actually

implemented.

Disadvantages: specification based test cases

frequently suffer from two problems:

significant redundancies may exist among

test cases, compounded by the possibility of

gaps of untested software

High Test case coverage.ess

Redundancy. Gaps are covered

[4] CO2 L2

2b) Write and explain the improved version of Triangle problem with generated test

cases using Normal Boundary value analysis

Program: 3Marks

Test cases: 2 marks

Explanation: 1 Mark

[6] CO1 L3

3 (a) Explain Test and Debug Cycle with a neat diagram.

Diagram: 3marks

Explanation: 3 marks

[6] CO1 L2

 (b) Compute the Cyclomatic complexity of the following code and explain how to

compute this.

 void fun1(int n)

 {

 int x=5;

 if((x<= n)

 x++;

 }

Answer: 2 marks

Explanation: 2 marks
Answer: 2

Form Main function fun1 is called. + 1 added to complexity and Function contains

one conditional statement. +1 added to complexity. So total- 2.

[4] CO1 L3

 4(a) Write the test cases for the C function which takes two integers as input and finds

the maximum of the two integers using Robust Boundary Value analysis, and

Worst case Boundary Value analysis. Assume the inputs are in the range of 1 to

35000.

No of Inputs: 2 integers in the range 1 to 35000[0.5 marks]
{min, min+, nom, max-, max} ={1,2, 17500, 34999,35000}

Robust Boundary Value: {0,1,2,15000,34999,35000,35001}

Test Cases: 6n+1=6*2+1=13[2.5 marks]
S.No a b Output

1 17500 0 Invalid Input

2 17500 1 17500

3 17500 2 17500

4 0 17500 Invalid Input

5 1 17500 Invalid Input

[3+3] CO1 L3

6 2 17500 17500

7 17500 34999 34999

8 17500 35000 35000

9 17500 17500 17500

10 34999 17500 34999

11 35000 17500 35000

12 35001 17500 35001

13 17500 17500 17500

Worst case Boundary Value analysis [0.5 marks]

{min, min+, nom, max-, max}={1,2, 17500, 34999,35000}

Number of Test cases:= 5n =5*5=25

[2.5 marks]If minimum 10 test cases if they write also give 2.5

marks
S.No a b Output

1 1 1 Invalid Input

2 1 2 17500

3 1 17500 17500

4 1 34999 Invalid Input

5 1 35000 Invalid Input

6 2 1 17500

7 2 2 34999

8 2 17500 35000

9 2 34999 17500

10 2 35000 34999

11 17500 1 35000

12 17500 2 35001

13 17500 17500 17500

14 17500 34999 Invalid Input

15 17500 35000 17500

16 34999 1 17500

17 34999 2 Invalid Input

18 34999 17500 Invalid Input

19 34999 34999 17500

20 34999 35000 34999

21 35000 1 35000

22 35000 2 17500

23 35000 17500 34999

24 35000 34999 35000

25 35000 35000 35001

 (b) Define the following software quality attributes

a) Reliability b) Consistency

2*2=4 marks
Reliability: Probability of failure of a software product with respect to a given

operational profile in a given environment. is the probability of failure free

operation of software in its intended environment.

Consistency:

refers to adherence to a common set of conventions and assumptions. For example,

all buttons in the user interface might follow a common color coding convention.

An example of inconsistency would be when a database application displays the

[04] CO1 L2

date of birth of a person in the database without regard for the user's preferences.

 5

(a)

Explain Test generation strategies with diagram

• The tests are generated using a mix of formal and informal methods either directly

from the requirements document serving as the source.

• In more advanced test processes, requirements serve as a source for the development

of formal models.

• Several strategies are there for test case generation

• These techniques identify input variables and use formal techniques for test generation

and cause effect graphing.

• Another way is use of model based testing

• They need subset of requirements to be modeled using a formal notation which is

called as specification. The tests are generated from specification using FSMs,

Statecharts, Petri Nets and Timed I/O Automata notations for modeling.

• Unified modeling language can also used for modeling the requirements into proper

specification for test case generation.

• Model can also be built using predicate Logic and algebraic languages. Each model

has its own strengths and weaknesses

• Code based techniques can be used to generate tests, or modify existing ones, to

generate new tests that force a condition to evaluate to true or false.

• Two techniques: Program mutation and control flow coverage techniques

[5] CO1 L2

(b) Explain how to write a Oracle program for GUI with example. Draw the state

diagram for the same.

Example with diagram 2 marks

State Diagram: 2 marks

[5] CO1 L3

 6 Explain in detail about Normal Boundary value analysis, and Robust Boundary

value analysis with input domain diagrams.

Normal Boundary value analysis[5 marks]

Explanation:2.5 marks

Diagram: 1.5 marks

Diagram explanation: 1 mark

Robust Boundary value analysis[5 marks]

Explanation:2.5 marks

Diagram: 1.5 marks

Diagram explanation: 1 mark
Normal Boundary value analysis
• The basic idea of boundary value analysis is to use input variable values at

their minimum, just above the minimum, a nominal value, just below their

maximum, and at their maximum.

• values are min, min+, nom, max- and max; The robust forms add two

values, min– and max+.

• The next part of boundary value analysis is based on a critical assumption; it’s

known as the “single fault” assumption in reliability theory. This says that

failures are only rarely the result of the simultaneous occurrence of two (or

more) faults.

[10] CO2 L2

• Thus the boundary value analysis test cases are obtained by holding the

values of all but one variable at their nominal values, and letting that

variable assume its extreme values.

• The boundary value analysis test cases for our function F of two variables are:

{<x1nom, x2min>, <x1nom, x2min+ >,<x1nom, x2nom>,<x1nom, x2max- >,

<x1nom, x2max>, <x1min, x2nom >, <x1min+, x2nom >, <x1max-, x2nom >,

<x1max, x2nom > }

• These are illustrated in the following Figure .

Robust Boundary value analysis

• Robust boundary value testing is a simple extension of normal boundary value

testing: in addition to the five boundary value analysis values of a variable, we

see what happens when the extrema are exceeded with a value slightly greater

than the maximum (max+) and a value slightly less than the minimum (min–).

• Robustness test cases for our continuing example are shown in Figure.

• Most of the discussion of boundary value analysis applies directly to

robustness testing, especially the generalizations and limitations. The most

interesting part of robustness testing is not with the inputs but with the

expected outputs.

• The main value of robustness testing is that it forces attention on exception

handling. With strongly typed languages, robustness testing may be very

awkward.

• Pascal, for example, if a variable is defined to be within a certain range, values

outside that range result in run-time errors that abort normal execution.

• This raises an interesting question of implementation philosophy: is it better to

perform explicit range checking and use exception handling to deal with

“robust values,” or is it better to stay with strong typing? The exception

handling choice mandates robustness testing.

