

Scheme of Evaluation Internal Assessment Test 1 – May.2021

Sub:		System Mo	odeling and	l Simulatio	n			Code:	17CS834
Date:	23/05/2021	Duration:	90mins	Max Marks:	50	Sem:	VIII	Branch:	ISE

Note: Answer Any Five Questions

	estion #	Description	Marks I	Distribution	Max Marks
	1	 For finding the cumulative probability and random numbers for IAT For finding the cumulative probability and random numbers for service times For finding the Inter-arrival times and arrival times For finding the service times from the random numbers For finding the time service begins, time service ends, waiting time etc. For finding the average waiting time and Probability of idle time of server 	1 M 1 M 1 M 1 M 1 M 5 M	10 M	10 M
	2	 For Finding the cumulative probability and random numbers for inter-Arrival Times For Finding the Cumulative probability and random no for service times of Able and Baker -Main Simulation Table-5M. The Marks Split up for this table is as shown below. -For Finding the Inter-Arrival Times from the random numbers -For Finding the arrival Times -For Finding the Service Times from the random numbers -For Finding the available server and time service begins -For Service completion time and time in the system For finding average time customer spends in system 	1 M 2M 1M 1M 1M 1M 2M 1M	10 M	10 M
3	a)	 Old system snapshot for time advance algorithm New System snapshot for time advance algorithm Steps for time advance algorithm Definition of simulation Defining and Explaining Models 	1.5 M 1.5 M 2 M 1M	5 M	10 M
	b) 4	 Examples of models For defining the system states like LQ(t),LS(t) -For defining the Future Event List 	2M 2M 2 M		

		 -For Updating the Cumulative statistics like B and MQ -For Simulation table defining all the above entities 	4 M 2 M 2 M	10 M	10 M
	5	For Simulation table for dump-truck problem-8M *The Marks split up is as shown below • For defining the system states like LQ(t),L(t),WQ(t),W(t)-2M • For defining the lists like loader queue and weighing queue-2M • For Defining the Future event list-3M • For updating the cumulative statistics and counters-2M For calculating the loader utilization and scale utilization-1M	2 M 2 M 3M 2M 1M	10 M	10 M
6	a)	 Finding the period 1 Mark Finding the random numbers and justification of maximum period – 4M 	5 M	5 M	10 M
	b)	 Defining and analyzing the components w.r.t given systems Justification 	4 M 1 M	5 M	10 M

Internal Assessment Test 1 Solutions- May.2021

Sub:		System Mo	odeling and	l Simulatio	n			Code:	17CS834
Date:	23/05/2021	Duration:	90mins	Max Marks:	50	Sem:	VIII	Branch:	ISE

Note: Answer Any Five Questions

1. Inter arrival time ranges from 1 to 10 min with equal probability. So probability = 1/10 = 0.1

IAT	Probab	Cumulative	Random No
	ility	Probability	Assessment
1	0.125	0.125	1-125
2	0.125	0.250	126-250
3	0.125	0.375	251-375
4	0.125	0.500	376-500
5	0.125	0.625	501-625
6	0.125	0.750	626-750
7	0.125	0.875	751-875
8	0.125	1.000	876-1000

ST	Probab	Cumulative	Random No
	ility	Probability	Assessment
1	0.10	0.10	1-10
2	0.20	0.30	11-30
3	0.30	0.60	31-60
4	0.25	0.85	61-85
5	0.10	0.95	86-95
6	0.05	1.00	96-100

Main Simulation table:

Custo	IAT	AT	ST	Time	Waiting	Time	Time customer	Idle time of
mer				Service	Time	Service	Spend in system	server
				Begins		Ends		
1	-	0	4	0	0	4	4	0
2	6	6	1	6	0	7	1	2
3	1	7	5	7	0	12	5	0
4	4	11	4	12	1	16	5	0
5	2	13	2	16	3	18	5	0
6	7	20	3	20	0	23	3	2
7	8	28	3	28	0	31	3	5
8	5	33	4	33	0	37	4	2
9	9	42	2	42	0	44	2	5
10	3	45	3	45	0	48	3	1
	To	otal	31		4			17

Average WT = Total WT/Total No of customers =4/10 = 0.4

Probability of idle time of server = Total idle time/Total run time of simulation = 17/48

Probability that a customer has to wait in queue = No of customers who wait/Total No of customers = 2/10

Average ST = Total ST/Total no of customers = 31/10

2. For Finding the cumulative probability and random numbers for inter-Arrival Times-1M

Inter-Arrival	Probability	Cumulative	Random No
time		Probability	Assessment
1	0.25	0.25	1-25
2	0.40	0.65	26-65
3	0.20	0.85	66-85
4	0.15	1.00	86-00

-For Finding the Cumulative probability and random no for service times of Able and Baker-2M

ST of	Probabilit	Cumulative	Random No	ST of	Probability	Cumulative	Random No
Able	y	Probability	Assessment	Baker		Probability	Assessment
2	0.30	0.30	1-30	3	0.35	0.35	1-35
3	0.28	0.58	31-58	4	0.25	0.60	36-60

4	0.25	0.87	59-87	5	0.20	0.80	61-80
5	0.17	1.00	88-00	6	0.20	1.00	81-100

-Main Simulation Table-6M.

Caller ID	IAT	AT	Server Choosen	ST	Time Service Begins		Service nds Baker	Caller Delay	Time customer Spend in system
1	-	0	Able	4	0	4	-	0	4
2	2	2	Baker	4	2	-	6	0	4
3	2	4	Able	2	4	6	-	0	2
4	4	8	Able	4	8	12	-	0	4
5	2	10	Baker	4	10	-	14	0	4
6	2	12	Able	3	12	15	-	1	3
7	3	15	Able	2	15	17	-	1	2
8	3	18	Able	4	18	22	-	0	4
9	3	21	Baker	4	21	-	25	0	4
10	1	22	Able	3	22	25	-	0	3
Total	24							2	34

• For finding the following times – 1 Mark

Time customer spend in the system = 34

3.a) Old system snapshot for time advance algorithm-1.5M

CIK	System State	Future Event List
Т	(5,1,6)	(3, \pm 1)— Type 3 event to occur at time \pm 1 (1, \pm 2)— Type 1 event to occur at time \pm 2 (1, \pm 3)- Type 1 event to occur at time \pm 3 (2, \pm 1)— Type 2 event to occur at time \pm 1

New System snapshot for time advance algorithm-1.5M

OCK	System State	Future Event List
<i>†</i> l	(5,1,5)	(1, t2)— Type 1 event to occur at time t1 (4, t*)— Type 4 event to occur at time t* (1, t3)— Type 1 event to occur at time t3 (2, tn)— Type 2 event to occur at time tn

-Steps for time advance algorithm-2M

- **Step 1.** Remove the event notice for the imminent event (event 3, time t\) from PEL
- **Step 2.** Advance CLOCK to imminent event time (i.e., advance CLOCK from r to t1).
- **Step 3.** Execute imminent event: update system state, change entity attributes, and set membership as needed.
- **Step 4.** Generate future events (if necessary) and place their event notices on PEL ranked by event time. (Example: Event 4 to occur at time t*, where t2 < t* < t3.)
- Step 5. Update cumulative statistics and counters.

- **3. b)** Definition: Simulation is the imitation of the real world or system over time -1 Mark Defining and explaining models with examples -4 Marks
- 1. Static Model represents a system at a particular point of time and also known as Monte-Carlo simulation.

Ex: Timetable

- 2. Dynamic Model Represents systems as they change over time. Ex: Simulation of a bank
- 3. Deterministic Model contains no random variables. They have a known set of inputs which will result in a unique set of outputs. Ex: Arrival of patients to the Dentist at the scheduled appointment time.
- 4. Stochastic Model has one or more random variable as inputs. Random inputs leads to random outputs. Ex: Simulation of a bank involves random inter arrival and service times.
- 5. Discrete and Continuous Model: A discrete system is one in which state variable changes only at discrete set of points in time.

Ex: Bank and machine repair problem

A continuous system is one in which the state variables changes continuously over time.

Ex. Head of water behind the dam, airplane moving continuously.

4. For defining the system states like LQ(t), LS(t)

Inter-arrival	Arrival	Service	Time Service	Time Service
time	Time	Time	Begins	Ends
-	0	4	4	8
8	8	1	8	9
6	14	4	14	18
1	15	3	18	21
8	23	2	23	25
3	26	4	26	30
8	34	5	34	39
7	41			

Clock	System State		Future Event List	Cumulative Statistics		
	LQ(t)	LS(t)		В	MQ	
0	0	1	(A,8)(D,4)(E,30)	0	0	
4	0	0	(A,8)(E,30)	4	0	
8	0	1	(A,14)(D,9)(E,30)	4	0	
9	0	0	(A,14)(E,30)	5	0	
14	0	1	(A,15)(D,18)(E,30)	5	0	
15	1	1	(A,23)(D,18)(E,30)	6	1	
18	0	1	(A,23)(D,21)(E,30)	9	1	
21	0	0	(A,23)(E,30)	12	1	
23	0	1	(A,26)(D,25)(E,30)	12	1	
25	0	0	(A,26)(E,30)	14	1	
26	0	1	(A,34)(D,30)(E,30)	14	1	
30	0	0	(A,34)(E,30)	18	1	

5. For Simulation table for dump-truck problem-9M

For calculating average loader and scale utilizations -1M

Clock	System State				Loader	Weighing	Future Event List	Cum	ulati
					Queue	Queue		ve	
								Stati	stics
	LQ(t)	L(t)	WQ(t)	W(t)				Lq(t)	Ls(t)
0	2	2	1	1	D5,D6	D2	(EW,D1,8)(EL,D3,5)(EL,D4,10)	0	0
5	1	2	2	1	D6	D2,D3	(EW,D1,8)(EL,D4,10)(EL,D5,5+5)	10	5
8	1	2	1	1	D6	D3	(EL,D4,10)(EL,D5,10)(EW,D2,12+8)	16	8
0	1	2	1	1	D0	D3	(ET,D1,30+8)	10	0
10	0	1	3	1	-	D3,D4,D5	(EL,D6,10+10)(EW,D2,20)(ET,D1,38)	20	10
20	0	0	3	1	-	D4,D5,D6	(ET,D1,38)(ET,60+20,D2)(EW,20+8,D3	30	20

28	0	0	2	1	-	D5,D6	(ET,D1,38)(ET,D2,80)(ET,D3,80+28)(EW,D4,28+16)	30	28
38	0	1	2	1	-	D5,D6	(EW,D4,44)(EL,D1,38+15)(ET,D2,80)(ET,D3,108)	30	38
44	0	1	1	1	-	D6	(ET,D4,40+44)(EL,D1,53) (ET,D2,80)(ET,D3,108)(EW,D5,44+12)	36	44

Average loader utilization = $\frac{36/2}{44}$ = $0.4\underline{0}$

Average Scale Utilization = 44/44 = 1

6) a)

Since m=64 = 2power6 so Period = m/4 = 64/4 = 16

X0 = 1

 $X1 = (13*1) \mod 64 = 13$

 $X2=(13*13) \mod 64 = 41$

 $X3=(13*41) \mod 64 = 21$

 $X4=(13*21) \mod 64 = 17$

.....

 $X16 = (13*5) \mod 64 = 1$

Hence maximum period is achieved at X16 since 16th value is same as initial value.

b) Examples of system and components

System	Entities	Attributes	Activities	Events	State variables
Banking	Customers	Account no,	Checking-	Arrival;	No. of busy tellers; no.
		Name	account balance	departure	of customers waiting
			Making deposits		
Hospital	Patients,	Patent ID,	Checkup,	Arrival,	No of Patients waiting,
_	Doctors	Doctor Name	Emergency	Departure	No of doctors busy/idle
College	Students,	Student id,	Teaching,	Arrival,	No of students coming,
	Teachers	Teacher ID	Learning	Departure	Teacher busy/idle
Railways	Riders	Ticket No	Traveling	Arrival at	No. of riders waiting at
				station; arrival at	each station; No. of
				destination	riders in transit