Scheme of Evaluation Internal Assessment Test 1 – May.2021 | Sub: | | System Mo | odeling and | l Simulatio | n | | | Code: | 17CS834 | |-------|------------|-----------|-------------|---------------|----|------|------|---------|---------| | Date: | 23/05/2021 | Duration: | 90mins | Max
Marks: | 50 | Sem: | VIII | Branch: | ISE | **Note:** Answer Any Five Questions | | estion
| Description | Marks I | Distribution | Max
Marks | |---|-------------|---|--|--------------|--------------| | | 1 | For finding the cumulative probability and random numbers for IAT For finding the cumulative probability and random numbers for service times For finding the Inter-arrival times and arrival times For finding the service times from the random numbers For finding the time service begins, time service ends, waiting time etc. For finding the average waiting time and Probability of idle time of server | 1 M
1 M
1 M
1 M
1 M
5 M | 10 M | 10 M | | | 2 | For Finding the cumulative probability and random numbers for inter-Arrival Times For Finding the Cumulative probability and random no for service times of Able and Baker -Main Simulation Table-5M. The Marks Split up for this table is as shown below. -For Finding the Inter-Arrival Times from the random numbers -For Finding the arrival Times -For Finding the Service Times from the random numbers -For Finding the available server and time service begins -For Service completion time and time in the system For finding average time customer spends in system | 1 M 2M 1M 1M 1M 1M 2M 1M | 10 M | 10 M | | 3 | a) | Old system snapshot for time advance algorithm New System snapshot for time advance algorithm Steps for time advance algorithm Definition of simulation Defining and Explaining Models | 1.5 M
1.5 M
2 M
1M | 5 M | 10 M | | | b) 4 | Examples of models For defining the system states like LQ(t),LS(t) -For defining the Future Event List | 2M
2M
2 M | | | | | | -For Updating the Cumulative statistics like B and MQ -For Simulation table defining all the above entities | 4 M
2 M
2 M | 10 M | 10 M | |---|----|---|------------------------------|------|------| | | 5 | For Simulation table for dump-truck problem-8M *The Marks split up is as shown below • For defining the system states like LQ(t),L(t),WQ(t),W(t)-2M • For defining the lists like loader queue and weighing queue-2M • For Defining the Future event list-3M • For updating the cumulative statistics and counters-2M For calculating the loader utilization and scale utilization-1M | 2 M
2 M
3M
2M
1M | 10 M | 10 M | | 6 | a) | Finding the period 1 Mark Finding the random numbers and justification of maximum period – 4M | 5 M | 5 M | 10 M | | | b) | Defining and analyzing the components w.r.t given systems Justification | 4 M
1 M | 5 M | 10 M | #### **Internal Assessment Test 1 Solutions- May.2021** | Sub: | | System Mo | odeling and | l Simulatio | n | | | Code: | 17CS834 | |-------|------------|-----------|-------------|---------------|----|------|------|---------|---------| | Date: | 23/05/2021 | Duration: | 90mins | Max
Marks: | 50 | Sem: | VIII | Branch: | ISE | **Note:** Answer Any Five Questions 1. Inter arrival time ranges from 1 to 10 min with equal probability. So probability = 1/10 = 0.1 | IAT | Probab | Cumulative | Random No | |-----|--------|-------------|------------| | | ility | Probability | Assessment | | 1 | 0.125 | 0.125 | 1-125 | | 2 | 0.125 | 0.250 | 126-250 | | 3 | 0.125 | 0.375 | 251-375 | | 4 | 0.125 | 0.500 | 376-500 | | 5 | 0.125 | 0.625 | 501-625 | | 6 | 0.125 | 0.750 | 626-750 | | 7 | 0.125 | 0.875 | 751-875 | | 8 | 0.125 | 1.000 | 876-1000 | | ST | Probab | Cumulative | Random No | |----|--------|-------------|------------| | | ility | Probability | Assessment | | 1 | 0.10 | 0.10 | 1-10 | | 2 | 0.20 | 0.30 | 11-30 | | 3 | 0.30 | 0.60 | 31-60 | | 4 | 0.25 | 0.85 | 61-85 | | 5 | 0.10 | 0.95 | 86-95 | | 6 | 0.05 | 1.00 | 96-100 | #### Main Simulation table: | Custo | IAT | AT | ST | Time | Waiting | Time | Time customer | Idle time of | |-------|-----|------|----|---------|---------|---------|-----------------|--------------| | mer | | | | Service | Time | Service | Spend in system | server | | | | | | Begins | | Ends | | | | 1 | - | 0 | 4 | 0 | 0 | 4 | 4 | 0 | | 2 | 6 | 6 | 1 | 6 | 0 | 7 | 1 | 2 | | 3 | 1 | 7 | 5 | 7 | 0 | 12 | 5 | 0 | | 4 | 4 | 11 | 4 | 12 | 1 | 16 | 5 | 0 | | 5 | 2 | 13 | 2 | 16 | 3 | 18 | 5 | 0 | | 6 | 7 | 20 | 3 | 20 | 0 | 23 | 3 | 2 | | 7 | 8 | 28 | 3 | 28 | 0 | 31 | 3 | 5 | | 8 | 5 | 33 | 4 | 33 | 0 | 37 | 4 | 2 | | 9 | 9 | 42 | 2 | 42 | 0 | 44 | 2 | 5 | | 10 | 3 | 45 | 3 | 45 | 0 | 48 | 3 | 1 | | | To | otal | 31 | | 4 | | | 17 | Average WT = Total WT/Total No of customers =4/10 = 0.4 Probability of idle time of server = Total idle time/Total run time of simulation = 17/48 Probability that a customer has to wait in queue = No of customers who wait/Total No of customers = 2/10 Average ST = Total ST/Total no of customers = 31/10 ### 2. For Finding the cumulative probability and random numbers for inter-Arrival Times-1M | Inter-Arrival | Probability | Cumulative | Random No | |---------------|-------------|-------------|------------| | time | | Probability | Assessment | | 1 | 0.25 | 0.25 | 1-25 | | 2 | 0.40 | 0.65 | 26-65 | | 3 | 0.20 | 0.85 | 66-85 | | 4 | 0.15 | 1.00 | 86-00 | -For Finding the Cumulative probability and random no for service times of Able and Baker-2M | ST of | Probabilit | Cumulative | Random No | ST of | Probability | Cumulative | Random No | |-------|------------|-------------|------------|-------|-------------|-------------|------------| | Able | y | Probability | Assessment | Baker | | Probability | Assessment | | 2 | 0.30 | 0.30 | 1-30 | 3 | 0.35 | 0.35 | 1-35 | | 3 | 0.28 | 0.58 | 31-58 | 4 | 0.25 | 0.60 | 36-60 | | 4 | 0.25 | 0.87 | 59-87 | 5 | 0.20 | 0.80 | 61-80 | |---|------|------|-------|---|------|------|--------| | 5 | 0.17 | 1.00 | 88-00 | 6 | 0.20 | 1.00 | 81-100 | -Main Simulation Table-6M. | Caller ID | IAT | AT | Server
Choosen | ST | Time
Service
Begins | | Service
nds
Baker | Caller
Delay | Time customer
Spend in
system | |-----------|-----|----|-------------------|----|---------------------------|----|-------------------------|-----------------|-------------------------------------| | 1 | - | 0 | Able | 4 | 0 | 4 | - | 0 | 4 | | 2 | 2 | 2 | Baker | 4 | 2 | - | 6 | 0 | 4 | | 3 | 2 | 4 | Able | 2 | 4 | 6 | - | 0 | 2 | | 4 | 4 | 8 | Able | 4 | 8 | 12 | - | 0 | 4 | | 5 | 2 | 10 | Baker | 4 | 10 | - | 14 | 0 | 4 | | 6 | 2 | 12 | Able | 3 | 12 | 15 | - | 1 | 3 | | 7 | 3 | 15 | Able | 2 | 15 | 17 | - | 1 | 2 | | 8 | 3 | 18 | Able | 4 | 18 | 22 | - | 0 | 4 | | 9 | 3 | 21 | Baker | 4 | 21 | - | 25 | 0 | 4 | | 10 | 1 | 22 | Able | 3 | 22 | 25 | - | 0 | 3 | | Total | 24 | | | | | | | 2 | 34 | • For finding the following times – 1 Mark Time customer spend in the system = 34 **3.a)** Old system snapshot for time advance algorithm-1.5M | CIK | System State | Future Event List | |-----|--------------|---| | Т | (5,1,6) | (3, \pm 1)— Type 3 event to occur at time \pm 1 (1, \pm 2)— Type 1 event to occur at time \pm 2 (1, \pm 3)- Type 1 event to occur at time \pm 3 (2, \pm 1)— Type 2 event to occur at time \pm 1 | New System snapshot for time advance algorithm-1.5M | OCK | System
State | Future Event List | |------------|-----------------|---| | <i>†</i> l | (5,1,5) | (1, t2)— Type 1 event to occur at time t1 (4, t*)— Type 4 event to occur at time t* (1, t3)— Type 1 event to occur at time t3 (2, tn)— Type 2 event to occur at time tn | -Steps for time advance algorithm-2M - **Step 1.** Remove the event notice for the imminent event (event 3, time t\) from PEL - **Step 2.** Advance CLOCK to imminent event time (i.e., advance CLOCK from r to t1). - **Step 3.** Execute imminent event: update system state, change entity attributes, and set membership as needed. - **Step 4.** Generate future events (if necessary) and place their event notices on PEL ranked by event time. (Example: Event 4 to occur at time t*, where t2 < t* < t3.) - Step 5. Update cumulative statistics and counters. - **3. b)** Definition: Simulation is the imitation of the real world or system over time -1 Mark Defining and explaining models with examples -4 Marks - 1. Static Model represents a system at a particular point of time and also known as Monte-Carlo simulation. Ex: Timetable - 2. Dynamic Model Represents systems as they change over time. Ex: Simulation of a bank - 3. Deterministic Model contains no random variables. They have a known set of inputs which will result in a unique set of outputs. Ex: Arrival of patients to the Dentist at the scheduled appointment time. - 4. Stochastic Model has one or more random variable as inputs. Random inputs leads to random outputs. Ex: Simulation of a bank involves random inter arrival and service times. - 5. Discrete and Continuous Model: A discrete system is one in which state variable changes only at discrete set of points in time. Ex: Bank and machine repair problem A continuous system is one in which the state variables changes continuously over time. Ex. Head of water behind the dam, airplane moving continuously. #### **4.** For defining the system states like LQ(t), LS(t) | Inter-arrival | Arrival | Service | Time Service | Time Service | |---------------|---------|---------|--------------|--------------| | time | Time | Time | Begins | Ends | | - | 0 | 4 | 4 | 8 | | 8 | 8 | 1 | 8 | 9 | | 6 | 14 | 4 | 14 | 18 | | 1 | 15 | 3 | 18 | 21 | | 8 | 23 | 2 | 23 | 25 | | 3 | 26 | 4 | 26 | 30 | | 8 | 34 | 5 | 34 | 39 | | 7 | 41 | | | | | Clock | System State | | Future Event List | Cumulative Statistics | | | |-------|--------------|-------|--------------------|-----------------------|----|--| | | LQ(t) | LS(t) | | В | MQ | | | 0 | 0 | 1 | (A,8)(D,4)(E,30) | 0 | 0 | | | 4 | 0 | 0 | (A,8)(E,30) | 4 | 0 | | | 8 | 0 | 1 | (A,14)(D,9)(E,30) | 4 | 0 | | | 9 | 0 | 0 | (A,14)(E,30) | 5 | 0 | | | 14 | 0 | 1 | (A,15)(D,18)(E,30) | 5 | 0 | | | 15 | 1 | 1 | (A,23)(D,18)(E,30) | 6 | 1 | | | 18 | 0 | 1 | (A,23)(D,21)(E,30) | 9 | 1 | | | 21 | 0 | 0 | (A,23)(E,30) | 12 | 1 | | | 23 | 0 | 1 | (A,26)(D,25)(E,30) | 12 | 1 | | | 25 | 0 | 0 | (A,26)(E,30) | 14 | 1 | | | 26 | 0 | 1 | (A,34)(D,30)(E,30) | 14 | 1 | | | 30 | 0 | 0 | (A,34)(E,30) | 18 | 1 | | #### **5.** For Simulation table for dump-truck problem-9M For calculating average loader and scale utilizations -1M | Clock | System State | | | | Loader | Weighing | Future Event List | Cum | ulati | |-------|--------------|------|-------|------|--------|----------|------------------------------------|-------|-------| | | | | | | Queue | Queue | | ve | | | | | | | | | | | Stati | stics | | | LQ(t) | L(t) | WQ(t) | W(t) | | | | Lq(t) | Ls(t) | | 0 | 2 | 2 | 1 | 1 | D5,D6 | D2 | (EW,D1,8)(EL,D3,5)(EL,D4,10) | 0 | 0 | | 5 | 1 | 2 | 2 | 1 | D6 | D2,D3 | (EW,D1,8)(EL,D4,10)(EL,D5,5+5) | 10 | 5 | | 8 | 1 | 2 | 1 | 1 | D6 | D3 | (EL,D4,10)(EL,D5,10)(EW,D2,12+8) | 16 | 8 | | 0 | 1 | 2 | 1 | 1 | D0 | D3 | (ET,D1,30+8) | 10 | 0 | | 10 | 0 | 1 | 3 | 1 | - | D3,D4,D5 | (EL,D6,10+10)(EW,D2,20)(ET,D1,38) | 20 | 10 | | 20 | 0 | 0 | 3 | 1 | - | D4,D5,D6 | (ET,D1,38)(ET,60+20,D2)(EW,20+8,D3 | 30 | 20 | | 28 | 0 | 0 | 2 | 1 | - | D5,D6 | (ET,D1,38)(ET,D2,80)(ET,D3,80+28)(
EW,D4,28+16) | 30 | 28 | |----|---|---|---|---|---|-------|---|----|----| | 38 | 0 | 1 | 2 | 1 | - | D5,D6 | (EW,D4,44)(EL,D1,38+15)(ET,D2,80)(ET,D3,108) | 30 | 38 | | 44 | 0 | 1 | 1 | 1 | - | D6 | (ET,D4,40+44)(EL,D1,53)
(ET,D2,80)(ET,D3,108)(EW,D5,44+12) | 36 | 44 | Average loader utilization = $\frac{36/2}{44}$ = $0.4\underline{0}$ Average Scale Utilization = 44/44 = 1 #### 6) a) Since m=64 = 2power6 so Period = m/4 = 64/4 = 16 X0 = 1 $X1 = (13*1) \mod 64 = 13$ $X2=(13*13) \mod 64 = 41$ $X3=(13*41) \mod 64 = 21$ $X4=(13*21) \mod 64 = 17$ $X16 = (13*5) \mod 64 = 1$ Hence maximum period is achieved at X16 since 16th value is same as initial value. ## **b**) Examples of system and components | System | Entities | Attributes | Activities | Events | State variables | |----------|-----------|-------------|-----------------|---------------------|--------------------------| | Banking | Customers | Account no, | Checking- | Arrival; | No. of busy tellers; no. | | | | Name | account balance | departure | of customers waiting | | | | | Making deposits | | | | Hospital | Patients, | Patent ID, | Checkup, | Arrival, | No of Patients waiting, | | _ | Doctors | Doctor Name | Emergency | Departure | No of doctors busy/idle | | College | Students, | Student id, | Teaching, | Arrival, | No of students coming, | | | Teachers | Teacher ID | Learning | Departure | Teacher busy/idle | | Railways | Riders | Ticket No | Traveling | Arrival at | No. of riders waiting at | | | | | | station; arrival at | each station; No. of | | | | | | destination | riders in transit |