

USN

Solution of Internal Assessment Test I – May. 2021

Sub: Design & Analysis of Algorithms Sub Code: 18CS42 Branch: CSE

Date: 20/05/2021 Duration: 60 min’s Max Marks: 50 Sem/Sec: 4/A,B,C & D OBE

Section I True or False, Multiple Choice 1 X 15 = 15

MARKS

CO

RBT

1

If a linked list is used instead of an array in the design of the iterative algorithm to

print Fibonacci sequence, it would be intractable.

a) True

b) False

Correct answer: False.

1 CO1 L2

2

Consider the following procedure SQUARE which is designed to return the square

of a number:

INPUT: N

OUTPUT: N^2

Read N from the user

Return N as N * N * N

Then SQUARE is an algorithm.

a)True

b)False

Correct answer: True.

1 CO1 L2

3

If the complexity of an algorithm is (n) then one of the expressions could be the

exact expression for the time complexity of the algorithm:

a)60n

b)6n + lg n

c)n^2 - n

d)n^2/2

Correct answer: a.

2 CO1 L3

4

If T(n) is O(n)and (n), then it is also:

a)Theta(n)

b)O(n^2)

c)Theta(n^2)

d Theta(1)

Correct answer: a.

1 CO1 L3

5

Suppose the probability that an element occurs in the last position of an array is

100%, then the complexity of linear search would be:

a)O(1)

b)O(n)

c)O(n^2)

d)O(n^3)

Correct answer: b.

2 CO1 L3

6

Suppose T(n) is O(g(n)) and Limn --> T(n) / g(n) would be equal to:

a)aconstant>0

b)infinity

c)0

d)variable

Correct answer: a.

1 CO2 L3

7

Suppose T(n) = 2T(n/2) + O(nd) and T(n) is O(n lg n). Then, d is ___:

a)0

b)1

c)2

d)3

Correct answer: b.

2 CO2 L3

8

If n < 0, why doesn’t the procedure to compute factorial cease to be an algorithm?

a)It computes incorrect value

b)It doesn’t terminate

c)Leads to exponential complexity

d)All the above

Correct answer: b.

1 CO1 L2

9

The complexity of finding the maximum in a linked list of integers is

a)Theta(1)

b)O(1)

c)Theta(n)

d)O(n)

Correct answer: d.

1 CO2 L3

10

A procedure doesn’t have to be ___________ to be called an algorithm

a)terminating

b)effective

c)correct

d)producing output

Correct answer: c.

1 CO1 L1

11

The complexity of finding if a vertex is connected to all other vertices in a graph

with n vertices, when the graph is represented as an adjacency matrix is

a) O(lg n)

b) O(1)

c) O(n)

d) O(n^2)

Correct answer: c

1 CO1 L2

12

The recurrence relation T(n) = T(n/2) + 5 is __________

a) O(5)

b) O(n/2)

c) O(lg n)

d) Theta(lg n)

Correct answer : c.

2 CO2 L3

13

Problems that have feasible solutions and can be computed using algorithms within

a reasonable time are known as___________

a)Intractable Problems

b)Tractable Problems

c)Maximization Problem

d)Minimization Problem

Correct answer : b)

1 CO1 L1

14

In a full binary tree, the number of nodes can be either even or odd.

a)True

b)False

Correct answer: False.

1 CO3 L1

15

for i = 1 to n do

for j = 1 to i do

a = b * c;

If T(n) is the time taken to execute this loop, then T(n) is O(___)

a)n

b)n^2

c)n^3

d)1

Correct answer : b)

2 CO2 L3

Section II Short Answer Questions 4 X 5 = 20

1

Suppose you need to sort following key-value pairs in the increasing order of keys:

INPUT: (14,5), (13, 2) (14, 3) (15,4) (16,4)

Now, there are two possible solutions for the two pairs where the key is the same

i.e. (14,5) and (14,3) as shown below:

OUTPUT1: (13, 2), (14, 5), (14,3), (15,4), (16,4)

OUTPUT2: (13, 2), (14, 3), (14,5), (15,4), (16,4)

Which output is stable sort? OUTPUT1 or OUTPUT2 ---------------------------(2M)

Explain why.--(3M)

Correct answer: OUTPUT1

The sorting algorithm which will produce the first output will be known as a stable

sorting algorithm because the original order of equal keys are maintained. (14, 5)

comes before (14,3) in the sorted order, which was the original order i.e. in the given

input, (14, 5) comes before (14,3) .

On the other hand, the algorithm which produces a second output will be known as

an unstable sorting algorithm because the order of objects with the same key is not

maintained in the sorted order. In the second output, the (14,3) comes before (14,5)

which was not the case in the original input.

5 CO1 L4

2

Without using the Master Theorem, derive the complexity in Big-O notation for the

expression: T(n) = T(n/2) + n/2.

Solution for the expression: T(n) = T(n/2) + n/2……………………………..(5M)

Solution:

T(n)=(T(n/4)+n/4)+n/2

=> T(n)= T(n/2^2)+n/4+n/2

T(n)=(T(n/8)+n/8)+n/4+n/2

=> T(n)=T(n/2^3)+n/2^3+2/4+n/2

.

.

.

.

.

.

.

.

T(n/2^i)+n/2^i+n/2^i-1+.....n/2

Let n/2^i=1 =>i=logn

T(n)= T(1)+n(i/2^i+½^i-1+....½)

T(n)= 1+n(1)

T(n)=O(n)

Correct answer: O (n)

5 CO1 L3

3

Let T(n) = 3n^3 + 2n^2 + 3 for an algorithm. Derive the complexity of the

algorithm either using the formal definition of Big-O or using L'Hopital's rule.

Solution using L'Hopital's rule or back substitution method……………………(5M)

Solution:

Back substitution Method:

T(n)=3n^3 + 2n^2 + 3

g(n)=n^3

T(n)<=c*g(n) for all n>=n0

Let c=8 and n0=1

=> 3n^3 + 2n^2 + 3 <=c*n^3

Hence T(n)=O(g(n)) => T(n)=O(n^3)

5 CO2 L3

4

 Use the recursive and iterative algorithms to print the 10th element of the Fibonacci

series and explain which of them is better by comparing the number of operations

performed.

To print the 10th element of the Fibonacci series…………………..(2M)

Explain which of them is better by comparing the number of operations

performed……………………………………………………………(3M)

Solution:

Recursive algorithm:

fibonacci(n)

If n<=1

return n

else

fibonacci(n-1)+fibonacci(n-2)

Iterative Algorithm:

Fibonacci(10)

f[0]=0;f[1]=1

For i=2 to 10

 f[i]=f[i-1]+f[i-2]

Return f[10]

Recursive version computes the element repeatedly.but in iterative version computes

the elements once and stored in an array.hence it uses extra space to compute 10th

element.

The time complexity will be O(n) -Linear.

Since the recursive function computes the intermediate terms repeatedly, the time

complexity will be O(2^10) ,which is exponential.

5 CO3 L4

Section III Long Answer Questions 1 X 10 = 10

1

Consider the following algorithm:

Algorithm Mystery(n)

//Input: A non negative integer n

s <-- 0

for i<-- 1 to n do

s<--s+i*i

return s

What does this algorithm compute? …………………………….(2M)

What is the input parameter?..(2M)

10 CO2 L3

If multiplication is considered to be the basic operation, how many times is the

basic operation executed in terms of the input parameter? ………..(2M)

Derive the time complexity expression of this algorithm and state it in the Big-O

notation. I.e., O(n), O(n2) etc. Show all your work. …………….(2M)

Suggest an improvement, or a better algorithm altogether, and indicate its time

complexity (aka. efficiency) class (constant, logarithmic, quadratic etc.). If you

cannot do it, try to prove that, in fact, it cannot be done………………….(2M)

Solution:

a. What does this algorithm compute?

Ans: Computes sum of squares of n numbers

b. What is the input parameter?

Ans: n

c. If multiplication is considered to be the basic operation, how many

times is the basic operation executed in terms of the input parameter?

Ans: n times

d. Derive the time complexity expression of this algorithm and state it

in the Big-O notation. I.e., O(n), O(n2) etc. Show all your work.

Ans: ∑ 1

 i=1<=n

= O(n)

e. Suggest an improvement, or a better algorithm altogether, and indicate its

time complexity (aka. efficiency) class (constant, logarithmic, quadratic

etc.). If you cannot do it, try to prove that, in fact, it cannot be done.

 Ans: Sum of squares of n can be computed using formula :

 [n(n+1)(2n+1)]/6

The time complexity is O(1).Hence the time complexity class is Constant

2

Present an algorithm that searches an unsorted array a[1:n] for an element X. If X

occurs twice or more in the array return true; else return false. Also analyze the

complexity of the algorithm in the best, average, worst cases and denote in the order

notation (Big-O)

Algorithm that searches an unsorted array a[1:n] for an element X………….(3M)

10 CO1 L4

Analyze the complexity of the algorithm in the best, average, worst cases and

denote in the order notation (Big-O)………………………………………….(7M)

Solution:

Algorithm SearchX(a[1:n],X)

Input: An array a[1:n], search key- X

 Output : true / false

countX=0,i=1

While i<=n do

if a[i]==X then

countX=countX+1

if countX>=2 then

 break

i=i+1

return true

else

return false

Analysis :

Best- case

If duplicate elements are present in the beginning of the array, them the number

of comparison will be 2---O(1) -Constant

worst -case:

If the duplicate elements present at the end of the array, then a maximum

number of comparisons must be done. O(n) - Linear

Avg-case:

If the elements are present at the middle, then the number of comparisons

needed will be n/2--O(n) -Linear

3

Consider the following recursive algorithm.

 ALGORITHM Q(n)

 // Input: A positive integer n

 if n = 1

return 1;

 else

return Q(n − 1) + 2 ∗ n − 1;

10 CO2 L3

Set up a recurrence relation for the number of multiplications made by this

algorithm, derive a closed/condensed form and mention the complexity in Big-O

notation.

Set up a recurrence relation for the number of multiplications……………(4M)

Derive a closed/condensed form and mention the complexity in Big-O

notation…………………………………………………………………….(6M)

ALGORITHM Q(n)

 // Input: A positive integer n

 if n = 1

return 1;

 else

return Q(n − 1) + 2 ∗ n − 1;

Set up a recurrence relation for the number of multiplications made by this

algorithm, derive a closed/condensed form and mention the complexity in

Big-O notation.

Solution:

M(n)=M(n-1)+1, M(1)=0

M(n) = M(n-1)+1

Using backward substitution,

M(n)= [M(n-2)+1]+1

 = M(n-2)+2

=M(n-3)+3

…..

=M(n-k) +k

When k=n-1,

M(n)= M(1)+n-1

=0+n-1

=n-1

Hence M(n) belongs to O(n)

