```
5
       Answer the following questions.
                                                                                                 [10]
      (a) Find out the time complexity of the given iterative algorithm. Give proper
      justification [5]
         Algo()
         INTEGER a, b, c
         FOR (a = n/3, a \le n, a++)
              FOR (b=1, b \le n, b=3*b)
                    FOR (c=1, c \le n, c = c*3)
                         PRINT (Design and Analysis of Algorithm)
      Time complexity :2.5 marks
      Justification:2.5 marks
       (b) Find out the space complexity of the given recursive algorithm. Give proper
                                                                                                        CO2
                                                                                                              L2
      justification. [5]
      Algo (INTEGER x)
              IF (x >= 1)
                Algo(x-1)
                PRINT (Design and Analysis of Algorithm)
      Space complexity: 2.5 marks
      Justification:2.5 marks
6.
      Design an algorithm to print from 1 to 100 without using for/while/do-while loop.
                                                                                                [10]
      Algorithm design:8 marks
      Algorithmic representation:2 marks
                                                                                                        CO<sub>2</sub>
                                                                                                              L2
```


IAT-I-DAA-Solution

(1) (4) Algorithm. An algorithm is a sequence of

un ambigous instructions for solving a problem, i.e., for obtaining a required output in a finite amount of time for any legitimate input

Big Oh(0). If $f(n) \neq c.g(n), n \neq no, c \neq 0$.

Then we may write f(n) = O(g(n)).

Big Theta (B) . f(m) = (B(g(m)) if C1.g(m) (-f(m)) =

C2. g(n) where C1, C2 >0, n>= no, no>=1.

1.6 Suppose, f(m) = 2, g(n) = 3, h(m) = 34. Then,

- f(n) <= c.g(n) => n2 <= n3

- g(n) (= c. h(n) + as m3/= n4 - then_

on f(0) <= (. h(0) =) on2 <= or - therefore,

[f(n) = 0 (h(n))]

Inansitive care: f(n) = O(g(n)), g(n) = O(h(n)),

then f(n)= 0(h(n))

2.) Unique (AJO. 7-17) for i=0 to n-2 do fog j'= i+1 to m-1 do if Aliz = = Altz then and refron false end if end fog end fog sutwin town Analysis: $C(n) = \frac{n-2}{2} \left(\frac{m-1}{2} \right)$ (a) (cold bison daily (cold of Mall Bi $= \sum_{i=1}^{n-2} \left[(n-i) - (i+1) + n \right]$ $= \frac{1}{2} \left(\omega^{-1-1} \right) \left(\omega^{-1} \right)$ $\frac{n(n-1)}{2} \quad \xi \quad O(m^2)$ Marion Cara Const. (mario Const. some some

Maria	CA CA
(3·) (a)	$n^2 + n = \Theta(7n^2). \tag{2}$
	Here we need to show $f(n) = D(g(n))$
	and $f(n) = \int L(a(n))$, $a(n) = \int (a(n))^{n^2+n} = O(a(n))$
	$\mathfrak{m}^2 + \mathfrak{n} = \mathcal{D}(+n^2)$.
_	f(n) = D(g(n)
	$n^{2}+n = c + 7n^{2}$, if $c=1$ $n^{2}+n = 1-7n^{2}$
=> =>	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
($n = 6 n^2$ it does satisfy for all values of n . Therefore, $f(n) = O(g(n))$
	hehore e=1, no=1
1000)	$f(n) = \Omega(f(n))$
	$n^{2}+n \geq = \frac{1}{4} \cdot 4n^{2} - i \int_{-\pi}^{\pi} \frac{1}{4} dx$
=>	$m_1 + n \rangle = p_1$
2/	n = 1 - n = 1 - 1 (f(n)) where
A.s	$\frac{7}{n^2+n} = 0 (7n^2)$ and $n^2+n = 1 (7n^2)$
	Linally we can say $m^2 + n = \Theta(7n^2)$.

```
3-)(6)
  2n+10 = O(n).
 f(n) = 2n+10, g(n) = m.
  - f(n) {20(g(m))
   27+10 (=0.7)
 => 27+10 (= 37
  ·. 20/10 = 0 (n). where C=3, no=10
 (e) 11^{n} = \omega(2^{n}).
  f(n) = 11^n, g(n) = 2^n
    lim \frac{11^{\eta}}{2^{\eta}} \Rightarrow \lim_{\eta \to q} \left(\frac{11}{2}\right)^{\eta} \Rightarrow \lim_{\eta \to q} (5.5)^{\eta} = q
   ·· f(n) = \omega(g(n)) = (41)^n = \omega(2^n).
 (d) m2 = 12 (m2+m)-
  (consider alle a. n2)=n2+n.c if c=1/2 | m2 = 1.
                \frac{1}{2} + \frac{1}{2} > = \frac{1}{2} + \frac{1}{2}
\frac{1}{2} + \frac{1}{2} > = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}
                    m^2\rangle = \eta = |\eta\rangle = 1
```

Experiment No.	Page No.:	W.
(4)	TOIA / m	CIVIR
	TOH (n, from, to, cux)	
(a)	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) = -1$	
	(
	Paint (Move from to to)	
	getwin	·····
	TOH (M-1, from, aux, 70)	
	print (* Wore from to to")	
	TDH/M	
18.77	TOH (n-1, aux, to, front)	
		- 3
(6)	ff η='3,	
	JOH (3, A, C, B)	
	TOH (2, A, B, C) TOH (2, B, C, A)	
	781.011	
tan	(1, A, e, B) TOH (1, B, A, e) TOH (1, A, e,	8.1
105	4. 1. 1. 2. 3. 3.	2
2	Time-complexity: T(n)=2.7(n-i)+1	
	= 2-[2-+(n-2)+1]+1	
	$= 2 \left[2 \left[2 \cdot T(m-3+1) + 0 \right] + 0 \right]$	1
بال	15 generalize 1 23- T(-7-3)+7	
	$T(n) = 2^{K} \cdot T(n-K) + 2^{K} - 1$	
	$= \mathcal{O}(2^{m})$.	
		44

(5-) (2) Just (a= n/3), a=n, a++) = 1000 1 fog (b=1, b/=n, b=b+3) -- 100p 2 fog (C=1, C/zm, C= C+3) ____ 200p3. $\frac{100p1}{2} : a = \frac{9}{3} \longrightarrow a = 3$ where $a = a \neq 1$.. Steps it takes. b=1 to b=n where b= 5 + 3 b = 1 where i = no. of steps. y .. Time competerity. 3. 1093 5. 1093 e. 7 0 (n. (log3 n)2)

6261	-180	Page No.:
	A(2)	Belet 2 be 3
S	7(2)	A A (3)
<u>L</u>	if (20 22)=1)	
	^	A(2)
	§ Δigo (2-1)	A(2) 2- Pring (1)
	DO: (2-1)	
	PHIN (DAA)	9(1) - print (1)
	<u> </u>	0(0)
		(A(O)
	h .	
7 44 25	De X	L L
N. G. P. E.	760) Here	_ Stack forames are requires.
	A(1)	- 20 1 Francis We riquires.
	9(2)	*
	A(3)	
	F	
=	Space Complexity	: It depends on the
	mo, of stack for	ames anomy clerk from
	Lawre constant as	emes, every stack frame Rose, space, let it be K.
		•
	NOW, total how	many calls - 17+1
	calls for n	input. Therefore Block
	space mana co	mpleaity_
	7000	, ,
	(7+1)·K	where K is constant.
	~ ~ ~ /	22
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		· ·
	76 55	

Paint (int m)

Sif (m)0) = where m=100]

Paint (n-1) print (n) printing statement. netwin sell willing ground sholl" base Burton of the relief of the small grand coment starts to an and constitute adams processing 1411 - Mora forman way fold wor Just John The House It was not the Spice con year b DI. (1416)

CO's to PO's & PSO's mapping

Course Outcomes		Mod ules cove red	P O 1	P O 2	P O 3	P O 4			P O 7	P O 8	P O 9	P O 1 0	P O 1 1	P O 1 2	P S O 1	P S O 2	P S O 3	P S O 4
CO1	Describe the computational solution to well-known problems like searching and sorting	1-2	2	3	2	2	-	2	-	-	2	-	-	-	2	-	-	2
CO2	Estimate computational complexity of various algorithms	1-5	3	3	2	2	-	2	-	-	2	-	-	-	2	-	-	2
CO3	Devise an algorithm using appropriate	2-5	3	3	2	2	-	2	-	-	2	-	-	-	2	-	-	2

d	lesign strategies for computation									
p	problems.									

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PR	PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)										
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation						
PO2	Problem analysis	PO8	Ethics	1	Slight/Low						
PO3	Design/development of solutions	2	Moderate/ Medium								
PO4	Conduct investigations of complex problems	3	Substantial/ High								
PO5	Modern tool usage	PO11	Project management and finance								
PO6	The Engineer and society	PO12	Life-long learning								
PSO1	Develop applications using differe	nt stacks	of web and programming technologic	es							
PSO2	Design and develop secure, paralle	el, distril	buted, networked, and digital systems								
PSO3	Apply software engineering method	ds to des	sign, develop, test and manage softwar	re sys	stems.						
PSO4	PSO4 Develop intelligent applications for business and industry										