
 

Solution 

 

Internal Assessment Test 1 – May 2021 

Sub: Operating Systems Code: 18CS43 

Date: 20-5-2021 Duration: 90mins 

Max 

Marks:  50 
Sem: IV Branch: ISE 

SECTION A 

DESCRIPTIVE QUESTIONS – 30 marks 

Note: Answer Any Five Questions                                                                                           (5*6 = 30) 

1. Why do you think dual mode operations of an Operating System is important? Explain. 

• Two modes of operation 1) User mode and 2)Kernel mode 

• A mode bit is a bit added to the hardware of the computer to indicate the current mode: i.e. kernel 

(0) or user (1) 

 

 
Transition from user to kernel mode 

 

 

• Working principle: 

1. At system boot time, the hardware starts in kernel-mode. 

2. The OS is then loaded and starts user applications in user-mode. 

3. Whenever a trap or interrupt occurs, the hardware switches from user-mode to 

kernel-mode (that is, changes the state of the mode bit to 0). 

4. The system always switches to user-mode (by setting the mode bit to 1) before 

passing control to a user-program. 

• Dual mode protects 

→ OS from errant users and 

→ errant users from one another. 

• Privileged instruction is executed only in kernel-mode. 

• If an attempt is made to execute a privileged instruction in user-mode, the hardware treats 

it as illegal and traps it to the OS. 

• A system calls are called by user-program to ask the OS to perform the tasks on behalf of 

the user program. 

 

2. Justify the statement “Most users’ view of the operating system is defined by system 

programs, not the actual system calls.” 

System Programs 

o They provide a convenient environment for program 

development and execution. (System programs also 

known as system utilities). 

o They can be divided into these categories: 



o Six categories of system-programs: 

1) File Management: These programs manipulate files i.e. create, delete, copy, 

and rename files. 

2) Status Information: 

• Some programs ask the system for 

→ date (or time) 

→ amount of memory (or disk space) or 

→ no. of users. 

• This information is then printed to the terminal (or output-device or file). 

3) File Modification 

• Text editors can be used to create and modify the content of files stored on 

disk. 

4) Programming Language Support 

• Compilers, assemblers, and interpreters for common 

programming-languages (such as C, C++) are provided to the user. 

5) Program Loading & Execution 
o The system may provide 

→ absolute loaders 

→ relocatable loaders 

→ linkage editors and 

→ overlay loaders. 

o Debugging-systems are also needed. 

6) Communications 

o These programs are used for creating virtual connections between 

→ processes 

→ users and 

→ computer-systems. 

o They allow users to 

→ browse web-pages 

→ send email or 

→ log-in remotely. 

• Most OSs are supplied with programs that 

→ solve common problems or 

→ perform common operations. Such programs include 

→ web-browsers 

→ word-processors 

→ spreadsheets and 

→ games. 

These programs are known as application programs. 

System Calls 

• These provide an interface to the OS services. 

• These are available as routines written in C and C++. 

• The programmers design programs 

according to an API. 

(API=application programming 

interface). 

• The API 

→ defines a set of functions that are available to the programmer (Figure 1.15). 

→ includes the parameters passed to functions and the return values. 

• The functions that make up an API invoke the actual system-calls on behalf of the programmer. 

• Benefits of API: 

1) Program portability. 

2) Actual system-calls are more detailed (and difficult) to work with than the API available to 

the programmer. 



 

 

Figure 1.15 Example of how system calls are used. 

 

• The following figure shows the relationship between an API, the system-call interface and the 

operating system, by illustrating how the OS handles a user application invoking the open() 

system call: 

 
 

• Three general methods are used to pass parameters to the OS: 

1) via registers. 

2) Using a table in memory & the address is passed as a parameter in a register (Figure 1.16). 

3) The use of a stack is also possible where parameters are pushed onto a 

stack and popped off the stack by the OS. 

 



 

Figure 1.16 Passing of parameters as a table. 

 

 

3. What is a Process state? With a neat diagram explain all the possible transitions in the states that 

can take place for a process. 

Process State: 

• As a process executes, it changes state. 

• Each process may be in one of the following states (Figure 1.24): 

□ New: The process is being created. 

□ Running: Instructions are being executed. 

□ Waiting: The process is waiting for some event to occur (such as I/0 completions). 

□ Ready: The process is waiting to be assigned to a processor. 

□ Terminated: The process has finished execution. 

• Only one process can be running on any processor at any instant. 

 

 Diagram of process state 

4. With a neat diagram, explain the components of a Process Control Block (PCB).  

Process Control Block: 

• In OS, each process is represented by a PCB (Process Control Block). 

Figure 1.25 Process control block (PCB) 

 
• PCB contains following information about the process (Figure 1.25): 

□ Program Counter - This indicates the address of the next instruction to be 



executed for the process. 

□ CPU Registers - These include 
→ accumulators (AX) 

→ index registers (SI, DI) 

→ stack pointers (SP) and 

→ general-purpose registers (BX, CX, DX). 

→Along with Program Counter, the state information of a process must be saved 

when an interrupt occurs, to allow the process to be continued afterward. The 

following figure shows the scenario: 

 
□ CPU Scheduling Information - This includes 

→ priority of process 

→ pointers to scheduling-queues and 

→ scheduling-parameters. 

 

 

5. Explain the advantages of a virtual machines over a non-virtual machine with a neat sketch. 

• Main idea: 

To abstract hardware of a single computer into several different execution environments. 

• An OS creates the illusion that a process has 

→ own processor & 

→ own (virtual) memory. 

• The virtual-machine provides 

→ an interface that is identical to the underlying hardware (Figure 1.22). 



→ a (virtual) copy of the underlying computer to each process. 

Figure 1.22 System models, (a) Nonvirtual machine, (b) 

Virtual machine. 

 

• Problem: Virtual-machine software itself will need substantial disk space to 

provide virtual memory. Solution: provide virtual disks that are identical in all respects 

except size. 

• Advantages: 

1) Complete protection of the various system resources. 

2) It is a perfect vehicle for OS‟s R&D. 

• Disadvantage: 

1) Difficult to implement due to effort required to provide an exact duplicate to 

underlying machine. 

 

Implementation: 

● The VM software can run in Kernel mode and VM itself can execute only in user mode. 

● Some actions need transfer from virtual user mode to virtual kernel mode. Example: 

o A system call made by a program on a virtual machine in virtual user mode will transfer 

the 

 control to virtual machine monitor in the real machine. 

o Then the VM monitor changes the register contents and program counter for the VM 

to simulate the effect of the system call. 

o It can restart the VM, noting that it is now in virtual kernel mode. 

 

Difference: 

● A real I/O might have taken 100ms, the virtual I/O might take less or more time 

● The CPU is being multiprogrammed among many virtual machines, further slowing down 

the VMs in unpredictable ways. 

● In an extreme case it may be necessary to simulate all instructions to provide true VM 

● VM works for IBM machines because normal instructions for VMs can execute directly on 

hardware and privileged instructions must be simulated and execute more slowly. 

 

Examples: 

● VMware architecture: 

● It is a popular commercial application that abstracts Intel 80X86 hardware into isolated 

VMs 

● It runs as an application on a host OS such as Windows or Linux and allows the 

system to run concurrently several different guest OS as independent VMs. 

● The following figure the architecture: 

i. Linux is running as the host OS 



ii. FreeBSD, WinNT, WinXP are running as guest OS. 

iii. The virtualization is the heart of VMware, as it abstracts the physical 

hardware into isolated VMs running as guest OS. 

iv. Each VM has its own virtual CPU, memory, disk drives, network interfaces, 

etc., 

 

 

6. What is Inter Process Communication (IPC)? Explain direct and indirect communications with 

respect to message passing systems.  

• System calls used: 

o create, delete communication connection 

o send, receive messages 

o transfer status information 

o attach or detach remote devices 

• Two models of communication. 

1. Message Passing Model 

● Information is exchanged through an IPC provided by OS. 

(IPC=inter process communication). 

● Steps for communication: 

i. Firstly, a connection must be opened using open connection system-call. 

ii. Each computer has a host-name, such as an IP name. 

Similarly, each process has a process-name, which is 

translated into an equivalent identifier. The get hostid & 

get processid system-calls do this translation. 

iii. Then, identifiers are passed to the open and close system-calls. 

iv. The recipient-process must give its permission for communication to take 

place with an accept connection system-call. 

(The processes that will be receiving connections are called daemons 

processes). 

v. Daemon processes 

→ execute a wait for connection system-call and 

→ are awakened when a connection is made. 

vi. Then, client & server exchange messages by read message 

and write message system calls. 

vii. Finally, the close connection system-call 



terminates the communication. 

• Advantages: 

i. Useful when smaller numbers of data need to be exchanged. 

ii. It is also easier to implement than is shared memory. 

 

2. Shared Memory Model 

• Processes use map memory system-calls to gain access to regions of memory 

owned by other processes. 

• Several processes exchange information by reading and writing data in the shared 

memory. 

• The shared memory 

→ is determined by the processes and 

→ are not under the control of OS. 

• The processes are also responsible for ensuring that they are not writing to the same 

location 

simultaneously. 

• Advantage: Shared memory allows maximum speed and convenience of 

communication 

• Disadvantage: Problems exist in the areas of protection and synchronization. 

 

 

SECTION B 

DESCRIPTIVE QUESTIONS – 20 marks 

Note: Answer All the Questions                                                                                           (10*2 = 20) 

7. Consider the following set of processes with arrival time. 

 
Draw Gantt chart using FCFS & SJF CPU scheduling techniques.            

Also, Calculate average Waiting Time, Response Time & Turn Around Time for each. 

 



 
 

 

8. Give two Comparisons for the following: 

a. Symmetric & Asymmetric Multiprocessor systems 

b. Short-term & Long-term Scheduler 

c. Processes & Threads 

d. Preemptive & Non-Preemptive Scheduling 

e. User threads & Kernel threads 

 

 



 
 



 


