

Internal Assesment Test - I

Sub:	CONTROL SYS	TEMS						Cod	e:	18EE	61
Date:	21/05/2021	Duration:	90 mins	Max Marks:	50	Sem:	6th	Brai	nch:	EEE	
Answer Any FIVE FULL Questions											
								Marks	Marks OBE		
1 1							41		CO	RBT	
	With the help of neat block diagram, define Open Loop and Closed Loop control systems. Write two examples for each systems						L1				
e	Construct mathemati electrical equivalent analogy								10	CO1	L4
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
			Fig (Q2							
F	Draw an equivalent mechanical network using force voltage analogy as shown in Fig Q3. Write the modelling equations. CO1 Fig Q3 Fig Q3								L4		
	For the mechanical son Torque current an equations.			tage analogy.					10	CO1	L4

5	Obtain the transfer function $E_0(s)$ / $E_i(s)$ of the given network in the Fig Q5 $F_i(s) = \frac{R_1}{R_2} + \frac{R_2}{R_3} + \frac{R_3}{R_0} + \frac{R_1}{R_0} + R_1$	10	CO1	L4
6	Obtain the mathematical model for armature controlled dc motor and derive the transfer function	10	CO1	L4
7	With neat circuit diagram of AC servomotor, derive the transfer function and design the expression for Motor Gain and Motor time constant	10	CO1	L4

IAT 1 Solution

Open-Loop Control Systems:

Any physical system which does not automatically correct the variation in its output.

- It is not a feedback system
- It operates on a time basis

Example: Washing machine, Electric Toaster, Traffic control.

2. Closed-Loop Control Systems:

Feedback control system.

system that maintains ▶ A prescribed а relationship between the output and reference input by comparing them and using the difference as a means of control.

Example: Traffic control, Room heating system.

2.

$$\frac{L_{1}di_{1}}{dt} + R_{1}i_{1}(t) + \frac{1}{C_{1}} \int i_{1}(t)dt + R_{1}i_{1}(t-i_{2})t dt = Q(t)$$

$$+ \frac{1}{C_{1}} \int (i_{1}-i_{2})t dt = Q(t)$$

$$L_{2} \frac{di_{2}}{dt} + R_{2}i_{2}(t) + \frac{1}{c_{z}} \int_{z_{z}(t)} dt + R_{12}(i_{z}-i_{z})t + \frac{1}{c_{12}} \int_{z_{2}(t)} (i_{z}-i_{z})t dt = 0$$

3.

$$M_{1}d\frac{2}{2x_{1}} + f_{1}\frac{d(x_{1}-x_{2})}{dt} + K_{1}(x_{1}-x_{2}) = f(t)$$

$$M_2 \frac{d^2 \chi_2}{dt^2} + f_2 \frac{d^2 \chi_2}{dt} + k_2 \chi_2 + f_1 \frac{d(\chi_2 - \chi_1)}{dt} + k_1 k_2 - \chi_1) = 0$$

4.

5.

Derivation.

$$\int \frac{d^2\theta}{dt^2} + B \frac{d\theta}{dt} = T - 3$$

$$e_b \prec \frac{d\theta}{dt} \Rightarrow e_b = K_b \frac{d\theta}{dt} - 4$$

$$I_{\alpha}(s)\left[R_{\alpha}+L_{\alpha}s\right]=V_{\alpha}(s)-E_{b}(s)$$

$$I_{a}(s) = V_{a}(s) - E_{b}(s) - (5)$$
 $R_{a} + L_{a} \cdot s$

L.T. B , $T(s) = K_{a} I_{a}(s) - (6)$

L.T. B , $D(s) (Js^{2} + Bs) = T(s) - (7)$

L.T. B , $E_{b}(s) = K_{b} \cdot s \cdot \theta(s) - (8)$

From $(3), (6), (8)$
 $T(s) = K_{a} (V_{a}(s) - K_{b} \cdot s \cdot \theta(s)) - (9)$
 $R_{a} + L_{a} \cdot s$

9 in 3,

$$\theta(s) \left[J s^2 + B s \right] = \frac{K_a V_a (s) - K_a K_b s \theta(s)}{R_a + L_a s}$$

 $\theta(s) \left[J s^2 + B s \right] \left[R_a + L_a s \right]_s^s = K_a V_a (s) - K_a K_b s \theta(s)$
 $\theta(s) \left[J s^2 + B s \right] \left(R_a + L_a s \right)_s^s + K_a K_b s \theta(s) = K_a V_a (s)$
 $\theta(s) \left[J s^2 + B s \right] \left(R_a + L_a s \right)_s + K_a K_b s \right] = K_a V_a (s)$
 $\vdots \frac{\theta(s)}{V_a(s)} = \frac{K_a}{J s^2 + B s} \left(R_a + L_a s \right)_s + K_a K_b s$

Mechanical Load,

$$15^{2}\theta(s) + fs \theta(s) + K_{2}s \theta(s) = K_{1}E_{2}(s)$$

$$\theta(s)$$
 [$Js+s(f+k_2)$] = k , $E_c(s)$

$$\frac{\mathcal{G}(S)}{\mathcal{E}_{\ell}(S)} = \frac{K_1}{S\left[\mathcal{J}S + (f + k_2)\right]} = \frac{K_1}{S\left(f + k_2\right)\left(\frac{\mathcal{J}S}{f + k_2} + 1\right)}$$

where
$$K_m = \frac{K_1}{f + K_2}$$
, $T_m = \frac{J}{f + K_2}$
Ly Motor Gain Ly Motor Time