CMR INSTITUTE OF INSTITUTE OF USN
TECHNOLOGY

Internal Assesment Test - I

IAT 1 Solution

1.**Open-Loop Control Systems:** $\overline{1}$.

Any physical system which does not automatically correct the variation in its output.

- It is not a feedback system \blacktriangleright
- It operates on a time basis $\overline{}$

Example: Washing machine, Electric Toaster, Traffic control.

2. Closed-Loop Control Systems:

▶ Feedback control system.

system that maintains prescribed \triangleright A a relationship between output the and the reference input by comparing them and using the difference as a means of control.

Example: Traffic control, Room heating system.

Mathematical Mode $L_1 \underline{d_{11}} + R_1 i_1 (t) + \frac{1}{C_1} \int i_1 t_1 dt + R_{12} [i_1 - i_2] t_1$ $+$ $\frac{1}{C_{11}}$ $\int (i, -i\pi)t \, dt = e(t)$ $L_2 \frac{di_2}{dt} + R_2 i_2(1) + \frac{1}{C_2} \int i_2(t) dt + R_{12} (i_2 - i_1)t$ $+\frac{1}{C_{12}}\int (i_{2}-i_{1})t dt = 0$

 $M_2 d^2 x_2 + F_2 d^2 x_2 + K_1 d^2 (x_2 + F_1 d^2 (x_2 - x_1))$

5.

6. Deri<u>vation</u> Let $i_f = const$ ant. R_a $\frac{1}{\sqrt{a}}$ $\frac{1}{\sqrt$ $Tdia \ni T=Kaia - (2)$ $\exists d^2\theta + B d\theta = T \qquad - (3)$ $e_{b} \propto \frac{d\theta}{dt} \Rightarrow e_{b} = k_{b} \frac{d\theta}{dt} - (4)$ $L \cdot T$ \overline{U} , $R_{a}I_{a}(s) + L_{a}s$ $I_{a}(s) = V_{a}(s) - E_{b}(s)$ $I_{\alpha}(s)$ $\left[\overline{R}_{\alpha}+L_{\alpha}s\right]=V_{\alpha}(s)-E_{\alpha}(s)$

$$
I_{a}(s) = \frac{V_{a}(s) - F_{s}(s)}{R_{a} + L_{a}s} - (s)
$$

\n
$$
L \cdot T(B), T(s) = K_{a} I_{a}(s) - (s)
$$

\n
$$
L \cdot T(B), B(s)[Ts^{2} + BS] = T(s) - (s)
$$

\n
$$
L \cdot T(B), F_{s}(s) = K_{b}s \theta(s) - (s)
$$

\n
$$
F \cdot dm \left(S, (s), (s) - K_{b} S \theta(s) \right) - (s)
$$

\n
$$
T(s) = K_{a} \left(\frac{V_{a}(s) - K_{b} S \theta(s)}{R_{a} + L_{a} S} \right) - (s)
$$

$$
\Theta(\text{s}) \left[\frac{1}{3}s^{2} + B s \right] = \frac{k_{a}v_{a}(s) - k_{a}k_{b}S \Theta(s)}{R_{a} + L_{a}S}
$$
\n
$$
\Theta(\text{s}) \left[\frac{1}{3}s^{2} + BS \right] \left[R_{a} + L_{a}S \right] = R_{a}v_{a}(s) - K_{a}K_{b}S \Theta(s)
$$
\n
$$
\Theta(\text{s}) \left[\frac{1}{3}s^{2} + BS \right] \left[R_{a} + L_{a}S \right] + K_{a}K_{b}S \Theta(s) = K_{a}v_{a}(s)
$$
\n
$$
\Theta(\text{s}) \left[\frac{1}{3}s^{2} + BS \right] \left[R_{a} + L_{a}S \right] + K_{a}K_{b}S \right] = K_{a}v_{a}(s)
$$
\n
$$
\therefore \frac{\Theta(s)}{v_{a}(s)} = \frac{k_{a}}{(s^{2} + BS \cdot k_{a}S \cdot k_{a}S) + K_{a}K_{b}S}
$$

7.

Mechanical Load,

 $\lim_{T_m \to 0} \frac{1}{\theta} \frac{1}{\theta} \frac{1}{\theta} + \lim_{\theta \to 0} \frac{1}{\theta} \frac{d\theta}{dt} = \lim_{T_m \to 0} \frac{1}{\theta}$ Motor Torgue; $T_{M} = K_1 e_C - K_2 \frac{d\theta}{dt}$. -- 2 2 in 0 . $J\frac{d^{2} \theta}{dt^{2}} + \frac{d\theta}{dt} = K_{1}e_{c} - K_{2}\frac{d\theta}{dt}$ - 3 $L \cdot T$ (3). $J\dot{s}g(s)+fS\theta(s)=K_1E_2(s)-K_2S\theta(s)$ $J\hat{\xi}\theta(s) + f S \theta(s) + K_2 S \theta(s) = K_1 E_2(s)$

$$
\theta(s) \left[Js^{2} + s[f + K_{2}] \right] = k, E_{c}(s)
$$

\n
$$
\therefore \frac{\theta(s)}{E_{c}(s)} = \frac{k}{s[Is + (f + K_{2})]} = \frac{k}{s[f + K_{2}]} \left[\frac{K_{1}}{f + K_{2}} + i \right]
$$

\n
$$
= \frac{K_{1} / (f + K_{2})}{s[Is + K_{2}]} = \frac{k_{1}}{s[x_{1}S + i]}
$$

\nwhere $K_{m} = \frac{k_{1}}{f + K_{2}}$, $Z_{m} = \frac{J}{f + K_{2}}$
\n
$$
L_{3 M_{0} for final} \qquad L_{3 M_{0} for Time}
$$