USN					

Internal Assessment Test 1 – March 2021

Sub:	b: Wireless Cellular and LTE 4G Broadband				Sub Code:	17EC81		Branch:	EC	E	
Date:	20.05.2021	Duration:	90 min's	Max Marks:	50	Sem / Sec: VIII ECE - A,B,C, D & TCE				OBE	
Answer any FIVE FULL Questions									MARKS	CO	RBT
1. List the advantages of OFDM leading to its selection for LTE and explain. [10]								[10]	CO1	L1	
2. Explain the following in brief: (i) Angular Spread and Coherence distance (ii) Doppler Spread and coherence time. [10]								CO1	L2		
3. (a) Define Path loss and shadowing with relevant expressions.							[05]	CO1	L3		
(b) Consider a user in the downlink of a cellular system, where the desired base station is at a distance of 500 meters and there are numerous nearby interfering base stations transmitting at the same power level. If there are three interfering base stations at a distance of 1km, three at a distance of 2km, and ten at a distance of 4 km. Use empirical path loss formula to find the signal-to-interference ratio (SIR) when $\alpha = 3$ and $\alpha = 5$.								CO1	L3		
4. a) Explain the cellular concept and discuss how interference can be reduced in cellular communication. (05) (05) (05)								CO1	L3		
5. Draw the block diagram of end-to-end architecture of EPC supporting current and Legacy radio access networks and discuss the elements of EPC. [04+06]								CO1	L1		
6. Explain the techniques used for mitigating narrowband fading.								[10]	CO1	L2	

Signature of CI Signature of CI

I List the aduantages of of DM leading to its Selection for LTE and Explain.

Sol" i) Elegant Solution to multipath Interference?

- Critical challenge to high bit rate transmission in a wireless channel is inter symbol Interference (ISI) caused by multipath

od high data rate Symbol time & shorter thus I only takes a small delay to cause Is LOPOM is multicornin modulation leahnique that overcomes this challenge

-> It increases the symbol distration of each stream such that the multipath delay spread is only a small fraction of symbol distration

-> Subcarriers are orthagonal to one another over -

Thereby alloiding non-over lapping Subcarmon channels to estimate ess

") Reduced Computational complexity:

fast focovier to constroms. Computational frequency moco

rate of bardwidll.

-> The computational Complexity of Df DM: BlogBTm
B-> Band width
Tm-> delay spread

-> Reduced complexity to practically attractive on the

- -> It reduces mobile device cost & power consumption
- iii) Erables effection multi-racces scheme.
- of DM can be used as multi-cecus scheme by positioning multiple users
- -> This is sreftwied to as OFDMA and 9t 9s explosted in Lie
- iv) Exploitation of ferguency diversity:
- -> DFDM-faille tates Coding & interbauling at non Subcarrier
- -) which provide robustness against boust errors!

 Course by portion of transmisesson spectrum
 - -> OF DM allows for bandwidth to be scalable without supporting the horsel ware disign of the base station & the mobile station
- U) Gistable for coherent demodulation:
- It Es relatively early to do petal-based channel estim.

 object in Open systems, which renders Suitable for othered June dulation Stremes that more passened bicions

vi) facilitates use of MCMo:

as that use for multiple cuntennows at both transmire the and receiver & emproues system performance.

_, multipad delays donot cause ISI

uii) Graceful degradation of performance under exues delay:

-> OFOM performence system degrade gracefully as the delay spread exceeds designed value.

- It is well swited for adaptive modulation coding

- which allows eystem to make the best of available channel conditions

will) Robust against narrow band Indesference:

-> trom as relatively retust against norrow band

- Since Such interference affects only a function of the subcarriers

(x) Efficient support of broadcast Scource:

The is possible to operated of DM network as single trequency Network (SFN)

3 It allows broadcast Cells to combine orien the air

-> erabling higher data vate broudcast for green train

- 8mission power

3 a) Define path loss and Shadowing with relevant expressions Poth loss It is the reduction in power density of an Emwave as Et propagates through space from transmitter path-loss models generally path loss es same as transmit relever distance - Lower frequency are more desirable and more Cumpqeg - Reflection from earth and other objects. A reflected was Often experiences 180 phase chift -> path loss is Po = Pe Ge Graha he -bound property Idu -> equation to dependent on antenna heights he & bo and carrier frequency Shadowing. -> It is the attenuation of received signal strength due

- Shadowing imported path loss formula

-> It causes received SINR to wavy chamatically over long term scales

3b)

Sol Given

desired base station distance = 500m 3 inderequence base station and a distance of I km

for a=3, Prid = A Podo3 (0.5)-3

Interference power

Port = PtPo do (3 (1)-3+ 3(2)-3+10 Cu59)

Signal to interference valion for a=3

STR =
$$\frac{P_{\text{od}}}{P_{\text{sH}}} = \frac{(0.5)^{-3}}{[3(1)^3 + 3(2)^{-3} + 10(4)^{-3}]} = 0.27$$

= 3.55 dB

- 2) taplain the following in boild.
- ?) Angular Spread and Coherence distance
- -> RMS angular spread of a channel can be denoted cos orms stastical distribution of the angle of the arrowing energy
- -> Channel can also uclosy over space
- -> Large Doms- Channel energy & coming from many.

 disrection due to lot of local scattering & small Oms

 Es channel energy & more focused
- -> Angular spread is cohounce distance Dc as Angula ospread increases cohounce destance decreases

- -> Coherence distance of d- any physical position & separated by a have uncorrelated received signal amplitude and phase
- > Rayleigh facting with uniform angular oppread

Should be spread apart, for multiple antenona system.

- ii) 'Doppler' ispread and coherence fime:
- Doppler powerspectour grues orlastical power distri-- bution of the channel 11s fuequiney for a single frequen-- 4 transmission
- It cause due to motion bloo Tx & Rx & 95 the founder transform of ALCat)

-> Doppler spread

4 - maxemum spread blue Tx4 Rv. fc - carrier frequery

C- speed of light

BCC (c 1t, -t2) 5Tc => hctn & hcto) 1 t 1 - t2 1 > TC => h(t1) & h(tn) are uncorrelated Jt 1 Kny 1 THE

-> Cother Relation blu Coherence time & dopplers spread TC SI I

They are Enwoysly proportional to each other.

5) Draw the block diagram of end-to end architecture of EPC Supporting Current & Legacy radio access Nationik and discuss the elements of EPC

Sin

- -> Core New design presented in 39PP release 8 to support LTE is enounced pocket core CEPCS
- Function pooleded by ER: i) Access Control
 - ii) parket routing & transfer
 - iii) mobility management

90) Security radio ossavce managineni

- v) Network managemen
- -> EPC Productes 1 elements

1. Sow (Servery Gateway)

- which terminates the enterguence towards to 30APP radio acers Netrook
- -> Manages mobility, down link packet beforing, into operator changing.
- 2. Packet data network godeway Op(500)
- Control IP data Services, documents nouting
- allocates It add grus
 - -> provides acres for non- 867 pp acres volus
- inforces policy, parket filtering
 - -> Charging Support.
- 3. MME (Mobility management entity)
- Supports use equipment content and eclentifies authoriticates & authorises were.
- -> lo cation trailing
- paging, roaming, hardouer security
- b. Policy and charging rules function (PCRF):
- -> manages Dos aspects
- Supports data flow
- delcetion, policy enforcement, flow based charging

CYREAN- CYSMI EDOTI - Radio acces xletrook

EMP: DP Multimedia Services

NME - mobility managment entity

PDU - Packet data Metrook

PCRF - Policy & charging Pules Function

PDSN: Packet data Correling Mode

SGISN: Servicing GPRS Service Mode

UTRAN: UMIS Terrustrial Radio acess Metwork.

4) B) Cell capacity expansion techniques are

1) (ell plitting:

Process of subdividing a congested cell into smaller Cells

-> Fach have its own BS & corresponding reduction on antenno helight &TX power

-> Epicrealed no. Of cells increased the no. of channel recursed & capacity

-> Fach cell is divided into 6 new smallercells with yeth area of the larger cells and use the same channel

> To preserve the frequency reuse plan. Ix pouler these are reduced by factor of 16 or

- ii) Cellaton Sectoring:
- -> It is used to increase the collector system capably through reducing the co-channel enterfuence.
- The 95 fixed sectoring with 3 01 6 Sectors &
 - -> It is efficient to mitigate the interference in case of uniform tradfic in a cell

40) Cellular concept

- > AT 37 proposed a core Edea of Cellular system 80197)
- → In cellular systems. the service area is sub diracted into smaller geographic areas called cells.
- -> Fach cell served by their own lower power Base station (BS)
- -> Meigh bosing cells do not use some sed of frequencies to proment Porturfuence

