

Scheme Of Evaluation Internal Assessment Test I – May 2021

Sub:	DIGITAL COM	MUNICATIO	N					Code:	18EC61
Date:	19/05/2021	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE,TCE

Note: Answer All Questions

Ques	stion	Description	Ma	arks	Max
#	ŧ		Distri	bution	Marks
1	a	Define Hilbert transform. Plot the magnitude response and phase response of the		5	10
		ideal Hilbert transformer. What is the impulse response of the ideal Hilbert			
		transformer?			
		Definition of Hilbert transform	2		
		Magnitude Response	1		
		Phase Response	1		
		Impulse Response	1		
•	b	Determine the Hilbert transform of $x(t)=sinc(t)$	2 1 1	5	
		Fourier Transform of x(t)	2		
		Hilbert transfrom of x(t)	3		
2	a	State and prove the properties of Hilbert transform.		6	10
		3 properties – statement and proof	6		
-	b	Determine the Hilbert transform of the signal $x(t)$ given by		4	
		$x(t) = \begin{cases} 1 & for -\frac{T}{2} \le t \le \frac{T}{2} \\ 0 & otherwise \end{cases}$			
		Convolution of x(t) and h(t)	4		
3		Discuss pre-envelope and complex envelope of bandpass signals with relevant		10	10
		equations. Plot the spectra of a bandpass signal, its pre-envelope and complex envelope.			
		pre-envelope and complex envelope – definition in time domain	4		
		pre-envelope and complex envelope – frequency domain representation	4		
		Plotting the spectra	2		
4		Derive an expression for the canonical representation of bandpass signals. Obtain a		10	10
		scheme for extracting in-phase and quadrature components of bandpass signals.			
		Draw the corresponding block diagram.			

		Expression in terms of in-phase and quadrature components	5		
		• Block diagram to get $x_i(t)$ and $x_q(t)$	3		
		• Block diagram to construct $x(t)$	2		
5	a	Sketch the waveforms for the binary sequence "11001100" using the following line		4	10
		coding schemes.			
		i) NRZ Polar ii) RZ Bipolar iii) Manchester ii) NRZ Unipolar			
		Plotting the waveforms	4		
	b	Sketch the waveforms for the binary sequence "110000000011" using the following		6	
		line coding schemes.			
		i) HDB3 ii) B3ZS iii) B6ZS			
		Plotting the waveforms	6		
6		Derive an expression for the power spectral density of NRZ bipolar signals.		10	10
		Fourier transform of basic pulse	3	1	
		Autocorrelation function	3		
		Simplification	4		

Solutions Internal Assessment Test I – May 2021

Sub:	DIGITAL COM	MUNICATIO	N					Code:	18EC61
Date:	19/05/2021	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE,TCE

Note: Answer All Questions

Que	estion	Description	Ma
	#		rks
1	a	Define Hilbert transform. Plot the magnitude response and phase response of the ideal Hilbert transformer. What is the impulse response of the ideal Hilbert transformer?	5
		+ve frequency components are phase shifted by -90 degree and -ve frequency components are	
		phase shifted by 90 degree $ H(f) = \begin{cases} 1 & \text{for } f \neq 0 \\ 0 & \text{for } f = 0 \end{cases}$	
		$\bullet < H(f) = \begin{cases} -90 \text{ degree for } f > 0 \\ 0 \text{ at } f = 0 \\ 90 \text{ degree for } f < 0 \end{cases}$	
		$h(t) = \frac{1}{\pi t}$	
	b	Determine the Hilbert transform of $x(t)=sinc(t)$	5
		• $X(f) = rect(f)$	
		$\bullet \widehat{X(f)} = X(f)H(f)$	
		• $\hat{x}(t) = IFT \text{ of } \hat{X}(f)$	
		$= \int_{-\frac{1}{2}}^{\frac{1}{2}} X(f)H(f)df$	
		$=\frac{1-\cos(\pi t)}{\pi t}$	
2	a	State and prove the properties of Hilbert transform.	6
		A signal and its HT have the same magnitude spectrum	
		Proof:	
		$\left \hat{X}(f)\right = X(f) H(f) = X(f) $	
		• HT of HT of $x(t)$ is $-x(t)$	
		Proof:	
		Total phase shift after taking HT once is equal to ∓90 degree	
		Total phase shift after taking HT twice is equal to ∓180 degree	

		Therefore, we get $-x(t)$ as HT of HT of $x(t)$	
		A signal and its HT are orthogonal to each other.	
		Proof:	
		$\int_{-\infty}^{\infty} X(f)\hat{X}^*(f)df = \int_{-\infty}^{\infty} X(f)X^*(f)j sgn(f)df = \int_{-\infty}^{\infty} X(f) ^2 sgn(f)df = 0$	
	b	Determine the Hilbert transform of the signal $x(t)$ given by	4
		$x(t) = \begin{cases} 1 & for -\frac{T}{2} \le t \le \frac{T}{2} \\ 0 & otherwise \end{cases}$	
		$\hat{x}(t) = x(t) * h(t)$	
		$=\int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{1}{\pi(t-\tau)} d\tau$	
		$= -\frac{1}{\pi} \ln\{t - \tau\} \left \frac{T}{2} \right $	
		$= -\frac{1}{\pi} ln \left(\frac{t - \frac{T}{2}}{t + \frac{T}{2}} \right)$	
3		Discuss pre-envelope and complex envelope of bandpass signals with relevant equations. Plot the spectra	10
		of a bandpass signal, its pre-envelope and complex envelope.	
		Let $x(t)$ be a bandpass signal.	1
		Let $X(t)$ be a bandpass signal. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	

Derive an expression for the canonical representation of bandpass signals. Obtain a scheme for extracting in-phase and quadrature components of bandpass signals. Draw the corresponding block diagram.

5	Derive an expression for the power spectral density of NRZ bipolar signals.	10
	$V(f) = T_b sinc(fT_b)$	
	$R_A(n) = \left\{ egin{array}{l} \displaystyle rac{a^2}{2} \ for \ n = 0 \ \\ \displaystyle -rac{a^2}{4} \ for \ n = \pm 1 \ \\ 0 \ other ise \end{array} ight.$	
	$S(f) = \frac{1}{T_b} V(f) ^2 \sum_{n=-\infty}^{\infty} R_A(n) e^{-j2\pi f n T_b}$ $= a^2 T_b \operatorname{sinc}^2(f T_b) \sin^2(\pi f T_b)$	
	Λ S(f)	
	$\frac{4}{T1^2}a^2T_b$	
	$\begin{array}{c c} \end{array}$	
	0 1 1 2 3	
	2Tb Tb Tb	
; ;	Sketch the waveforms for the binary sequence "11001100" using the following line coding schemes.	4
	i) NRZ Polar ii) RZ Bipolar iii) Manchester ii) NRZ Unipolar	
$\prod_{i=1}^{n}$		
	Sketch the waveforms for the binary sequence "110000000011" using the following line coding schemes.	6

