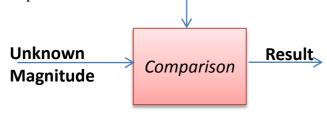


# CMR Institute of Technology, Bangalore DEPARTMENT OF MECHANICAL ENGINEERING I - INTERNAL ASSESSMENT

Semester: 4-CBCS 2018 Date: 21 May 2021


Subject: MECHANICAL MEASUREMENTS AND METROLOGY (18ME46B) Time: 01:00 PM - 02:00 PM

Faculty: Mr Puneeth Kumar Max Marks: 50

## IAT # 1 Scheme & Solution

1. What is metrology? Define measurement and list the objectives of measurements.

**Solution**: Metrology is a pure science of measurement.



**Figure: Measurement Process** 

Measurement is a process of comparing the unknown magnitude with pre-defined standards.

Ex: To measure length, steel scale or tape is used to measure unknown length.

2M

**2M** 

## **Objectives of Metrology:**

- To provide the required accuracy at minimum cost.
- To determine the process capabilities.
- To reduce the cost of inspection.
- To reduce the cost of rework and rejection.

4M

- 2. Using M112 set of Slip gauges,, build the following dimensions
- i) 49.3115, ii) 68.208 & iii) 52.496mm

# **Solution:**

| Range (mm)       | Steps(mm) | No. of Pcs. |
|------------------|-----------|-------------|
| 1.001 – 1.009    | 0.001     | 9           |
| 1.01 – 1.49      | 0.01      | 49          |
| 0.5 – 24.5       | 0.5       | 49          |
| 25, 50, 75 & 100 | 25        | 4           |
| 1.0005           | -         | 1           |
| Total            |           | 112         |

**2M** 

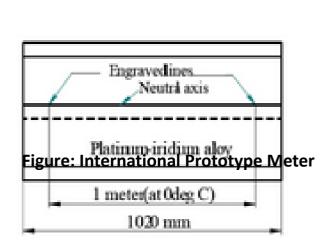
```
i)
     49.3115mm
        49.3115
                  Combination = 25.00+21.00+1.31+1.001+1.0005 = 49.3115mm
         1.0005
        47.3110
         1.001
        46.3100
         1.31
        45.00
        21.00
        25.00
        25.00
        00.00
                                                                                 3M
ii)
      68.208 mm
       68.208
                 Combination = 50.00+16.00+1.20+1.008 = 68.208mm
        1.008
       67.20
        1.20
       66.00
       16.00
       50.00
       50.00
       00.00
                                                                                 3M
     52.496mm
iii)
        52.496
                 Combination = 50.00+1.49+1.006 = 52.496mm
         1.006
        51.49
         1.49
        50.00
```

50.00

00.00

**2M** 

3. With a sketch, explain anyone type of material length standard. What are the disadvantages and advantages of material length standards?


#### **Solution:**

# **Material Length Standards**

**3M** 

# • <u>International Prototype Meter</u>

It is defined as the straight line distance, at 0°C, between the engraved lines of pure platinum-iridium alloy (90% platinum & 10% iridium) of 1020 mm total length and having a 'TRESCA' cross section as shown in fig. The graduations are on the upper surface of the web which coincides with the neutral axis of the section.



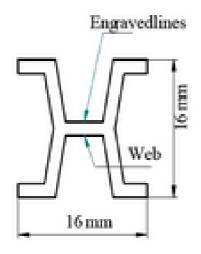


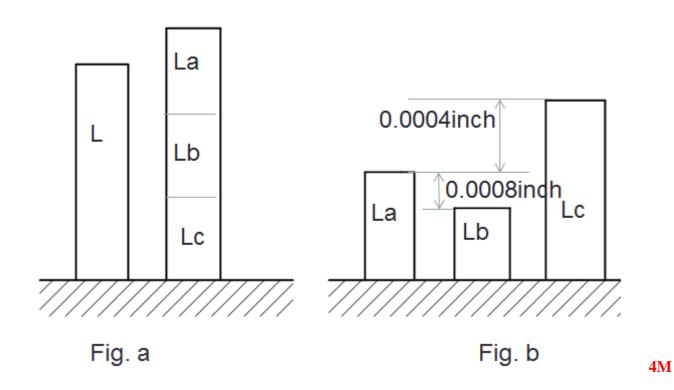

Figure: Tresca C/S 3M

# **Advantages:**

- 1. Cost of manufacturing is less.
- 2. If it is used in standard room and maintain necessary temp, then it will be more accurate.

**2M** 

## **Disadvantages:**


1. Can't use for long run, due to molecular changes, it effects the accuracy.

**2M** 

2. Exact replica will not be available, if it is destroyed or damaged.

4. Three 12" gauges are measured on a level comparator by wringing them together and comparing with a 36" gauge and then inter comparing them. The 36" gauge actually measures to be 36.00009" and the three gauges together are found to have combination length of 36.00014. Gauge A is 0.00008" longer than Gauge B but shorter then gauge C by 0.00004". Determine the correct length of each gauge.

## **Solution:**



L=36.00009" or L=36.00014" A is longer gauge B -0.00008" A is shorter by gauge C -0.00004"

La+Lb+Lc=36.00014" ---eq.1 Eq -1 **1M** 

Lb=La -0.00008" Eq-2 1 M

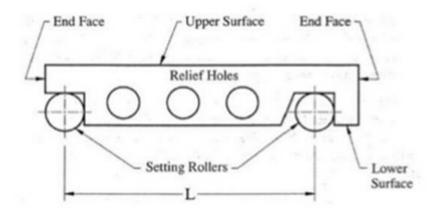
Lc=La+0.00004" Substitute Lb abd Lc values in eq.1

3La+0.00004-0.00008=36.00014"

3La=36.00014-0.00004+0.00008

3La= 36.00018"

La=36.00018/3


La = 12.00006''

**Lb**=La-0.00008 = **11.99998** "

Lc = La + 0.00004 = 12.0001''

5. Explain principle and uses of sine bar with neat sketch.

#### **Solution:**



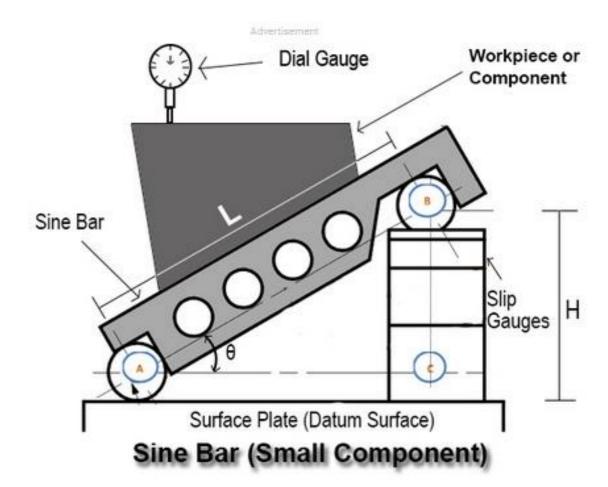
- A sine bar measures angle based on the sine principle.
- They are made of corrosion resistant steel, hardened, ground and stabilized.
- A sine bar is specified by the distance between the centre of the two rollers, i.e. 100 mm, 200 mm, & 300 mm.
- The upper surface flatness is upto accuracy of 1 micron.
- Relief holes are provided to reduce weight.

Now the angle of sine bar over surface plate can be easily measured by taking sine inverse of **H** divided by **L**, where **H** is the height of slip gauges and **L** is the length of sine bar.

$$sin\theta = \frac{H}{L}$$

$$\theta = \sin^{-1}\left(\frac{H}{L}\right)$$

where,


0 = angle of the component to be measured

H = height of the slip gauges

L = length of the sine bar

# **Uses of sine bar:**

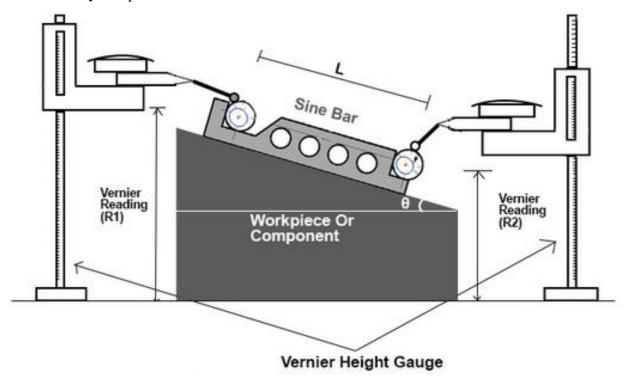
1. For small component.



Now the angle of sine bar over surface plate can be easily measured by taking sine inverse of **H** divided by **L**, where **H** is the height of slip gauges and **L** is the length of sine bar.

$$sin\theta = \frac{H}{L}$$

$$\theta = sin^{-1} \left( \frac{H}{L} \right)$$


where,

0 = angle of the component to be measured

H = height of the slip gauges

L = length of the sine bar

# 2. For heavy component



# Sine Bar (Large Component)

The angle of this large component is evaluated using the formula below:

$$sin\theta = \frac{H1 - H2}{L}$$

$$\theta = sin^{-1}(\frac{H1-H2}{L})$$

where,

θ = angle of the component to be measured

H1 = height of the upper roller

H2 = height of lower roller

L = length of the sine bar