

Department of Civil Engineering

<u>17CV832 – HYDRAULIC STRUCTURES</u>

Scheme and Evaluation

Q.No.	Question	Mark	CO	РО	RBL
1a	List out the various forces acting on a gravity dam	5	CO1	PO2	L2
Ans	The gravity dam is subjected to the following forces: 1. Water pressure 2. Weight of the dam 3. Uplift pressure 4. Pressure due to Earthquake forces 5. Ice pressure 6. Wave pressure 7. Silt pressure and 8. Wind pressure	S. T.		By also A	5
1b	Write a note on Drainage galleries	5	CO1	PO2	L2
Ans	Galleries are the horizontal or sloping openings or passages the dam. They may run longitudinally (i.e. parallel to dam (i.e. normal to the dam axis) and are provided at various galleries are interconnected by steeply sloping passages of fitted with stairs or mechanical lifts. Function and types galleries in Dams (i) Foundation Gallery A gallery provided in dam may serve one particular purpose or more than one purpose. For example, a gallery provided near the rock foundation, serves to drain off the water which percolates through the foundations. This foundation gallery or a drainage gallery. 1. It runs longitudinally and is quite near to the upstream Drain holes are drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of this gallery and the same drilled from the floors of the sam	axis) (elevation by vertical axis) (elevation by elevati	oncreted is cal	ersely ll the shafts of a led a dam.	2 (any 2)

Department of Civil Engineering

Department of Civil Engineering					
	grouting has been completed. Seepages is collected through these drain holes. 2. Besides draining off seepage water, it may be helpful for drilling and grouting of the foundations, when this cannot be done from the surface of the dam. (ii)Inspection Galleries The water which seeps through the body of the dam is collected by means of a system of galleries provided at various elevations and interconnected by vertical shafts, etc. All these galleries, besides draining off seepage water, service inspection purpose. They provide access to the interior of the dam and are, therefore, called inspection purposes. They generally serve other purposes along with this purpose. 1. They intercept and drain off the water seeping through the dam body 2. They provide access to dam interior for observing and controlling the behavior of the dam. 3. They provide enough space for carrying pipes, etc. during artificial cooling of concrete 4. They provide access to all the outlets and spillway gates, valves, etc. by housing their electrical and mechanical controls. All these gates, valves, etc, can hence be easily controlled by men, from inside the dam itself.				
2.	Explain the concept of elementary profile of a gravity dam and how it is helpful in classifying a dam as low and high	L3			
Ans	An elementary profile of a dam will be triangular in section, having zero width at the water level at the top where water pressure is zero, and a maximum base width b, where the maximum water pressure acts. Thus, the section of the elementary profile is of the same shape the hydrostatic pressure distribution diagram. For reservoir empty condition, a right angled triangular profile will provide the maximum possible stabilizing force against overturning, without causing tension in the base. This is so because weight of the dam acts and distance b/3 from upstream face and is closer to it. If any other triangular profile is provided, its weight will act still closer to the upstream face to provide a higher stabilizing force, but tension will be developed at the toe when the dam is empty. Base width of the elementary profile of dam $B = H / \sqrt{\rho - c}$				

The principal stress at the toe of an elementary profile of a gravity dam is used

to calculate limiting height of the dam. i.e.,

	$\sigma_{1} = wH(\rho - c + 1)$	
	In this expression the only variable changing the value of σ_1 is H. The maximum value of this principal stress should not exceed the allowable stress f for the material.	2.5
	Thus, in the limiting case, $H = f/w (\rho + 1)$ The limiting height defines the distinction between a low and high gravity dam. A low gravity dam is the one in which the height H is less than that given in the equation. If the height of the dam to be constructed is more than that given in the equation, the dam is known as high gravity dam. For such dams, the section will have to be given extra slopes to the upstream and downstream sides, below the limiting height, to bring the compressive stress within the limits.	
3.	A solid gravity dam is to be constructed with concrete (1: 2: 4) having ultimate compressive strength of 16800 kN/m². Find out the height upto which the dam may be considered as a low dam. Assume factor of safety = 4 and specific gravity of concrete 2.4	L4
Ans	Solution: - Equation for limiting height of the gravity dam	2
	Given data: $f = \frac{16800}{4} \frac{kN/m^2}{q \cdot 8I(2 \cdot 4 + 1)}$ Where $H = \lim_{N \to \infty} hing height of the dam$ $f = \lim_{N \to \infty} hing height of the dam$ $h = \lim_{N \to \infty} hi$	2
	$H = 9$ $W = 9.81 \text{ kN/m}^3$ $H = 125.92 \text{ m}$ $H = 125.92 \text{ m}$ $H = 9.81 \text{ kN/m}^3$ $H = 125.92 \text{ m}$	1
	factor of Safety=4; The dam may be considered as low dam Up to the height of 125.9m.	
4.	From the following data, design and sketch the practical profile of a gravity dam of stone masonry: Ground level = 130.50 m, HFL = 155.50 m, Wave height = 1.0 m, Specific Gravity of masonry = 2.25:	L4
	Permissible stress in stone masonry = 1250 kN/m ²	

Department of Civil Engineering

Ans

Given data:

Free board F.B = 1.5 hw = 1.5 m

hw= wave height = 1 m.

H = Revervois walin

depth = 25m

.. Height of the dam = 157 - 130.5

= 26.5 m

limiting height of the dam =
$$\frac{f}{w(g+1)}$$

= 1250

 $\frac{g}{g} = \frac{1}{g} = \frac$

Since the height of the dam is < limiting height of the dam, the designed dam is low gravity dam.

i. The dimensions of the practicle profile of the dam is calculated as per 13 recommendation.

depth of water H=155.5-130.5=25m

Top width of the dam a = 0.14 H = 3.5m

(Roadway width)

Base width of the elementary profile=b=th/9

=25/2.25

=16.67 m

upstream offset=a=0.22 m

i Total Base width of the dam=16.67+0.22

B=16.89 m

Distance upto which the UIS slope is vertical

from the UIS water level = $2a\sqrt{s} = 2\times3.5\times\sqrt{2.25}$ = 10.5 m Distance upto which the UIS slope is inclined from the UIS water level = $3.1a\sqrt{s} = 3.1\times3.5\times\sqrt{2.25}$ = 16.275 m 4

3

Following data were collected from a concrete gravity dam: Maximum reservoir elevation = 150.00m Base level of the dam = 100.00m Tail water elevation = 110.00m Base width of the dam = 40.00m
$Pn(heel) = \frac{EV}{B} \left[1 - \frac{6e}{B}\right] = 86.17 \text{ kN/m}^2$
Primo= 697,24 kn/m2- b) Normal stress at the hel
a) Normal stress at the toe $P_{n(toe)} = \frac{\sum V}{B} \left[1 + \frac{6e}{B} \right] = \frac{11751.3}{30} \left[1 + \frac{6 \times 3.9}{30} \right]$ $P_{n(toe)} = 697.24 \text{ kN/m}^2$
iii) The normal stresses in the base of the dam.
ZH 7848
11) Factor of significant $V = 0.7 \times 11751.3 = 1.05 > 1$ SAFE.
ii) Factor of safety against stiding
FSO = ZRM = 288000 = 1.82 > 2 8000 = 1.82 > 2
i) Factor of safety against overturning
ZH 7848 ZV IPSI3 ERM 288000 ZOM 157587.8
U = 1 x 30x 9.81x 0.45x402648.7 20.00 - 52974
The pressure
2 Water prender Pw=1x9.81x40x40 7848 - 13.33 - 104613.8
2 water pressure
W=12x30x40x24 - 14400 20 288,000 -
1 set weight HV (m) RM - OM (+ve) (-ve)
SLINO Dimension H V (m) Moment about tree, (kN-m)

Department of Civil Engineering

(b) Uptijt pressure per unit length acting on gravity dam

(i) uplijt
$$p^{T}$$
 at Heel = $9.81 \times 50 = 490.5 \text{ kN}$

(ii) uplijt p^{T} at $6allery = \frac{50}{100} \times 9.81 \times 50 = 245.25 \text{ kN}$

(iii) uplijt p^{T} at toe = $9.81 \times 10 = 98.1 \text{ kN}$

Total uplijt p^{T} on $9.81 \times 10 = 9.81 \times 10 = 9.81 \times 10$
 $U_1 = (\frac{1}{2} \times 245.25 \times 10) \times [\frac{2}{3} \times 10) + 30] = 44962.5$
 $U_2 = (245.25 \times 10) \times [\frac{10}{2} + 30] = 85837.5$
 $U_3 = (\frac{1}{2} \times 30 \times 147.15) \times [\frac{2}{3} \times 30] = 44145.0$
 $U_4 = (30 \times 98.1) \times (\frac{30}{2}) = \frac{44145.0}{219090 \text{ kN-m}}$

CI: **Prof. Usha A**

CCI: **Prof. Divya Viswanath**