

Visvesvaraya Technological University

Belgaum, Karnataka-590 018

A Project Report on

“Voice Recognition and Object Identification Robot”

Project Report submitted in partial fulfillment of the requirement for the
award of the degree of

Bachelor of Engineering
In

Electrical & Electronics Engineering

Submitted by

Ashwin Sundar Ram (1CR17EE011)
Delip Antonio (1CR17EE019)

 Souptik Mukherjee (1CR17EE068)

 Vaisakh Anil (1CR17EE080)

Under the Guidance of

Mr. P Velrajkumar

Associate Professor , Department of Electrical & Electronics Engineering

CMR Institute of Technology

CMR Institute of Technology, Bengaluru-560 037

Department of Electrical & Electronics Engineering

2020-2021

i

 CMR INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

AECS Layout, Bengaluru-560 037

 Certificate

Certified that the project work entitled “Voice Recognition and Object Identification

Robot” carried out by Mr. Ashwin Ram Sundar, USN 1CR17EE011; Mr. Delip Antonio ,

USN 1CR17EE019; Mr. Souptik Mukherjee, USN 1CR17EE068; Mr. Vaisakh Anil, USN

1CR17EE080 are bonafied students of CMR Institute of Technology, Bengaluru, in partial

fulfillment for the award of Bachelor of Engineering in Electrical & Electronics Engineering

of the Visvesvaraya Technological University, Belgaum, during the year 2020-2021. It is

certified that all corrections/suggestions indicated for Internal Assessment have been

incorporated in the Report deposited in the departmental library.

 The project report has been approved as it satisfies the academic requirements in respect

of Project work prescribed for the said Degree.

Signature of the Guide

Mr. P Velrajkumar,

Associate Professor

EEE Department

CMRIT, Bengaluru

Signature of the HOD

Dr. K. Chitra

Professor & HOD

EEE Department

CMRIT, Bengaluru

Signature of the Principal

Dr. Sanjay Jain

Principal,

CMRIT, Bengaluru

External Viva

Name of the Examiners Signature & Date

1.

2.

CMR INSTITUTE OF TECHNOLOY
DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

 AECS Layout, Bengaluru-560 037

 DECLARATION

We, [Mr. Ashwin Ram Sundar (1CR17EE011), Mr. Delip Antonio (1CR17EE019), Mr. Souptik

Mukherjee (1CR17EE068), Mr. Vaisakh Anil (1CR17EE080)], hereby declare that the report

entitled “Voice Recognition and Object Identification Robot” has been carried out by us under

the guidance of P Velrajkumar, Associate Professor, Department of Electrical & Electronics

Engineering, CMR Institute of Technology, Bengaluru, in partial fulfillment of the requirement for

the degree of BACHELOR OF ENGINEERING in ELECTRICAL & ELECTRONICS

ENGINEERING, of Visveswaraya Technological University, Belagaum during the academic year

2020-21. The work done in this report is original and it has not been submitted for any other degree

in any university.

Place: Bengaluru

Date:

Ashwin Ram (1CR17EE011)

Delip Antonio (1CR17EE019)

Souptik Mukherjee (1CR17EE068)

Vaisakh Anil (1CR17EE080)

iii

 Abstract

In this project, we try to implement a voice-controlled object identification robot. A speech

recognition system is used to recognize a set of predefined commands such as forward,

backward, left, right and stop.

A speech recognition system is used to recognize a set of predefined commands. The robot

navigates its way as per the voice-command signal, whilst simultaneously scanning its

environment for the required object using object identification.

The objective of this project is to design and build a low cost, fully functional voice-controlled

assistant that is capable of locating and identifying the object as instructed by voice command.

Acknowledgement

The satisfaction and euphoria that accompany the successful completion of any task

would be incomplete without the mention of people, who are responsible for the completion

of the project and who made it possible, because success is outcome of hard work and

perseverance, but stead fast of all is encouraging guidance. So with gratitude we

acknowledge all those whose guidance and encouragement served us to motivate towards

the success of the project work.

We take great pleasure in expressing our sincere thanks to Dr. Sanjay Jain,

Principal, CMR Institute of Technology, Bengaluru for providing an excellent academic

environment in the college and for his continuous motivation towards a dynamic career.

We would like to profoundly thank Dr. B Narasimha Murthy, Vice-principal of CMR

Institute of Technology and the whole Management for providing such a healthy

environment for the successful completion of the project work.

We would like to convey our sincere gratitude to Dr. K Chitra, Head of Electrical

and Electronics Engineering Department, CMR Institute of Technology, Bengaluru for

her invaluable guidance and encouragement and for providing good facilities to carry out

this project work.

We would like to express our deep sense of gratitude to Mr. P Velrajkumar,

Assistant Professor, Electrical and Electronics Engineering, CMR Institute of

Technology, Bengaluru for his/her exemplary guidance, valuable suggestions, expert

advice and encouragement to pursue this project work.

We are thankful to all the faculties and laboratory staffs of Electrical and

Electronics Engineering Department, CMR Institute of Technology, Bengaluru for

helping us in all possible manners during the entire period.

Finally, we acknowledge the people who mean a lot to us, our parents, for their

inspiration, unconditional love, support, and faith for carrying out this work to the finishing

line. We want to give special thanks to all our friends who went through hard times

together, cheered us on, helped us a lot, and celebrated each accomplishment.

Lastly, to the Almighty, for showering His Blessings and to many more, whom we

didn’t mention here.

 CONTENTS

Title Page

i

Certificate

ii

Declaration

iii

Abstract

iv

Acknowledgements

v

Contents

vi-vii

List of Figures viii

Chapter 1 : INTRODUCTION

Chapter 2 : LITERATURE REVIEW

Chapter 3 : METHODOLOGY

Chapter 4 : CODES

Chapter 5 : CONCLUSION

1

2

9

13

39

Chapter 6 : REFERENCES

40

 LIST OF FIGURES

Figure 1 Basic Object Detection Model

Figure 2 Working of the Object Detection System

Figure 3 MS COCO Dataset Categories

Figure 4 Datasets Related to Object Recognition groups

Figure 5 Basic Tasks of Robot

Figure 6 Working Block Diagram of the Robot

Figure 7 Flowchart of Working : Part A

Figure 8 Flowchart of Working : Part B

Figure 9 Output from the Webcam interfaced with RPi

Figure 10 Output from the Webcam interfaced with RPi

1 | P a g e

CHAPTER 1

INTRODUCTION

Vision based control of the robotic system is the use of the visual sensors as a

feedback information to control the operation of the robot. It is a well known

fact that disabled people face different challenges and difficulties regarding

their physical movements. Due to limited options available, they are often

restricted in their movement and may need to depend on other person’s

assistance. But this may be quite inconvenient for the person assisting as well

as for the person being assisted. In such scenarios, the robots whose operation

is controlled by human voice-commands, can provide a potential solution to

their problems.

Voice-controlled robots can also be useful in applications other than assisting

disabled people. For example, in military operations such voice-controlled

robots can be moved differentially by tracking a desired object. The key idea

behind such applications is assisting the humans in reducing their manual

efforts and the risk factors.

The objective of this project is to design and build a low cost, fully functional

voice-controlled assistant that is capable of aiding the visually impaired by

locating and identifying the required object as instructed by voice command.

2 | P a g e

CHAPTER 2

 LITERATURE REVIEW

Research Paper 1: A review and an approach for object detection in images

January 2017 International Journal of Computational Vision and

Robotics 7(1/2):196

An object detection system finds objects of the real-world present either in a

digital image or a video, where the object can belong to any class of objects

namely humans, cars, etc. In order to detect an object in an image or a video

the system needs to have a few components in order to complete the task of

detecting an object, they are a model database, a feature detector, a

hypothesizer and a hypothesizer verifier.

Figure 1

Computer Vision (CV): Computer Vision is using a computer to process a

camera stream (2D mathematical values) to get a higher-level understanding of

what the camera is capturing.

Machine learning (ML): Use thousands of images of an object --let’s assume a

cup-- and use this data to calculate a model (picture) for what the average cup

looks like based on all the images in the data-set. More pictures = more accurate

model.

3 | P a g e

This particular robot combines Machine Learning with Computer Vision. This

means it passes the webcam stream through a machine-learnt model in order to

detect objects in the frame. For example, based on the 'average cup model' ML

example, the computer can look at the camera's video frame and try to fit the

average cup image on to your new image. If it fits within a certain degree of

accuracy, the new image will be labeled as a cup. By tracing where exactly this

object is detected via the camera frame, we get object detection.

Figure 2

4 | P a g e

Research Paper 2: Microsoft COCO: Common Objects in Context: Tsung-

Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr

Dollár.

Microsoft presented a new dataset with the goal of advancing the state-of-the-

art in object recognition by placing the question of object recognition in the

context of the broader question of scene understanding. This is achieved by

gathering images of complex everyday scenes containing common objects in

their natural context. Objects are labeled using per-instance segmentations to

aid in precise object localization. Our dataset contains photos of 91 objects

types that would be easily recognizable by a 4 year old. With a total of 2.5

million labeled instances in 328k images, the creation of our dataset drew upon

extensive crowd worker involvement via novel user interfaces for category

detection, instance spotting and instance segmentation. We present a detailed

statistical analysis of the dataset in comparison to PASCAL, ImageNet, and

SUN.

Figure 3

5 | P a g e

Datasets related to object recognition can be roughly split into three groups:

those that primarily address object classification, object detection and semantic

scene labeling.

i.) Image Classification: The task of object classification requires

binary labels indicating whether objects are present in an image.

Early datasets of this type comprised images containing a single

object with blank backgrounds, such as the MNIST handwritten

digits or COIL household objects

ii.) Object detection: Detecting an object entails both stating that an

object belonging to a specified class is present, and localizing it in

the image. The location of an object is typically represented by a

bounding box. Early algorithms focused on face detection using

various ad hoc datasets. Later, more realistic and challenging face

detection datasets were created.

iii.) Semantic scene labeling: The task of labeling semantic objects in

a scene requires that each pixel of an image be labeled as belonging

to a category, such as sky, chair, floor, street, etc. In contrast to the

detection task, individual instances of objects do not need to be

segmented. This enables the labeling of objects for which individual

instances are hard to define, such as grass, streets, or walls. Datasets

exist for both indoor and outdoor scenes.

6 | P a g e

Figure 4

Research Paper 3: Kannan, K. & Selvakumar, J. (2015). Arduino Based

Voice Controlled Robot”, International Research Journal of Engineering

and Technology (IRJET), Vol. 02, p-ISSN: 2395-0072, e-ISSN: 2395-0056.

Voice Controlled Robot (VCR) is a mobile robot whose motions can be

controlled by the user by giving specific voice commands. The speech is

received by a microphone and processed by the voice module. When a

command for the robot is recognized, then voice module sends a command

message to the robot’s microcontroller. The microcontroller analyzes the

message and takes appropriate actions.

Figure 5

7 | P a g e

There is camera which is mounted in the head of the robot will give live

transmission and recording of the area. The speech recognition circuit functions

independently from the robot’s main intelligence [central processing unit

(CPU)]. This is a good thing because it doesn’t take any of the robot’s main

CPU processing power for word recognition. The CPU must merely poll the

speech circuit’s recognition lines occasionally to check if a command has been

issued to the robot.

How Speech Recognition Works

Speech recognition has its roots in research done at Bell Labs in the early

1950s. Early systems were limited to a single speaker and had limited

vocabularies of about a dozen words. Modern speech recognition systems have

come a long way since their ancient counterparts. They can recognize speech

from multiple speakers and have enormous vocabularies in numerous

languages.

The first component of speech recognition is, of course, speech. Speech must

be converted from physical sound to an electrical signal with a microphone,

and then to digital data with an analog-to-digital converter. Once digitized,

several models can be used to transcribe the audio to text.

Most modern speech recognition systems rely on what is known as a Hidden

Markov Model (HMM). This approach works on the assumption that a speech

signal, when viewed on a short enough timescale (say, ten milliseconds), can

be reasonably approximated as a stationary process—that is, a process in which

statistical properties do not change over time.

8 | P a g e

In a typical HMM, the speech signal is divided into 10-millisecond fragments.

The power spectrum of each fragment, which is essentially a plot of the signal’s

power as a function of frequency, is mapped to a vector of real numbers known

as cepstral coefficients. The dimension of this vector is usually small—

sometimes as low as 10, although more accurate systems may have dimension

32 or more. The final output of the HMM is a sequence of these vectors.

To decode the speech into text, groups of vectors are matched to one or more

phonemes—a fundamental unit of speech. This calculation requires training,

since the sound of a phoneme varies from speaker to speaker, and even varies

from one utterance to another by the same speaker. A special algorithm is then

applied to determine the most likely word (or words) that produce the given

sequence of phonemes.

9 | P a g e

CHAPTER 3

METHODOLOGY

The object detection model algorithm runs very similarly to the face detection.

Instead of using the 'Face Detect' model, we use the COCO model which can

detect 90 objects listed. If the object being detected is to the right of the camera

frame, the robot moves right to center the object, and if the object is to the left

of the camera frame, the robot moves left to center the object.

The movement of the robot is controlled by using voice-commands, which are

given using a smart mobile phone to an Android OS based platform.

Figure 6

10 | P a g e

Bluetooth technology exchanges data over a short range but is very proficient

way of communicating between two devices such as Rasberry Pi and python

script. Data packages are sent and received through Bluetooth channel. It is

essential for robots to take commands without any delay so we will use

Bluetooth as the main communication method. In daily life such robots can be

used for navigation and for control guidance to a certain position.

With the help of the two basic functions which are voice recognition and

Bluetooth communication the robot can be used for variable purposes and

application commercially and domestically as mentioned above. It is vital to

create more technological advances in voice recognition systems to enhance

the efficiency of such robots.

Figure 7

11 | P a g e

Figure 8

12 | P a g e

Tools Used

• Software

Python

• Hardware

Rasberry Pi

Camera Module

DC Motors

L298N DC Motor Driver

Bluetooth Module HC-05

13 | P a g e

CHAPTER 4

CODES

Codes used in laptop for speech recognition and sending and receiving of data

from the laptop and Raspberry Pi 3b+

Code 1:

import socket

import voiceRecBlue as vrb

import time

serverMacAddress = 'b8:27:eb:49:6a:de'

print("Starting sending data")

i=1

while(1):

 port = 4

 s = socket.socket(socket.AF_BLUETOOTH, socket.SOCK_STREAM,

socket.BTPROTO_RFCOMM)

 s.connect((serverMacAddress ,port))

 try:

 text = vrb.convertTTS()

 print(text)

 # while text!='':

 # if text == "quit":

14 | P a g e

 # break

 # s.send(bytes(text, 'UTF-8'))

 # time.sleep(5)

 if(text == 'forward'):

 s.send(bytes(text, 'UTF-8'))

 if(text == 'backward'):

 s.send(bytes(text, 'UTF-8'))

 if(text == 'left'):

 s.send(bytes(text, 'UTF-8'))

 if(text == 'right'):

 s.send(bytes(text, 'UTF-8'))

 if(text == 'stop'):

 s.send(bytes(text, 'UTF-8'))

 if(text == 'quit'):

 print("Program is closing now")

 s.close()

 exit()

 text=''

 print(f'Execution {i}')

 i+=1

 except KeyboardInterrupt:

 text='term'

 s.send(bytes(text,'UTF-8'))

s.close()

15 | P a g e

Code 2:

Python program to translate

speech to text and text to speech

import speech_recognition as sr

import pyttsx3

Initialize the recognizer

Function to convert text to

speech

def SpeakText(command):

 # Initialize the engine

 engine = pyttsx3.init()

 engine.say(command)

 engine.runAndWait()

Loop infinitely for user to

speak

def convertTTS():

16 | P a g e

Exception handling to handle

 # exceptions at the runtime

 try:

 r = sr.Recognizer()

 # use the microphone as source for input.

 with sr.Microphone() as source2:

 # wait for a second to let the recognizer

 # adjust the energy threshold based on

 # the surrounding noise level

 r.adjust_for_ambient_noise(source2, duration=0.4)

 #listens for the user's input

 audio2 = r.listen(source2)

 # Using ggogle to recognize audio

 MyText = r.recognize_google(audio2)

 MyText = MyText.lower()

 return MyText

 except sr.RequestError as e:

 return("Could not request results; {0}".format(e))

17 | P a g e

except sr.UnknownValueError:

 return("unknown error occured")

Codes used in Raspberry Pi for the movement and object detection

Code 3:

import RPi.GPIO as GPIO

import time

in1 = 24

in2 = 23

en = 25

in3 = 22

in4 = 27

enb = 4

temp1=1

temp2=1

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BCM)

GPIO.setup(in1,GPIO.OUT)

GPIO.setup(in2,GPIO.OUT)

18 | P a g e

GPIO.setup(en,GPIO.OUT)

GPIO.setup(in3,GPIO.OUT)

GPIO.setup(in4,GPIO.OUT)

GPIO.setup(enb,GPIO.OUT)

GPIO.output(in1,GPIO.LOW)

GPIO.output(in2,GPIO.LOW)

GPIO.output(in3,GPIO.LOW)

GPIO.output(in4,GPIO.LOW)

p=GPIO.PWM(en,1000)

q=GPIO.PWM(enb,1000)

p.start(100)

q.start(100)

def ultrasonic():

 GPIO.setmode(GPIO.BCM)

 TRIG1 = 5

 ECHO1 = 6

 #print ("Distance Measurement In Process")

 GPIO.setwarnings(False)

19 | P a g e

 GPIO.setup(TRIG1, GPIO.OUT)

 GPIO.output(TRIG1, False)

 GPIO.setup(ECHO1, GPIO.IN)

 #print ("Waiting For Sensor1 To Settle")

 time.sleep(.1)

 GPIO.output(TRIG1, True)

 time.sleep(0.00001)

 GPIO.output(TRIG1, False)

 while GPIO.input(ECHO1) == 0:

 pass

 pulse_start1 = time.time()

 while GPIO.input(ECHO1) == 1:

 pass

 pulse_end1 = time.time()

 pulse_duration1 = pulse_end1 - pulse_start1

 distance1 = pulse_duration1 * 17150

 distance1= round(distance1, 1)

 return distance1

20 | P a g e

def stop():

 GPIO.output(in1,GPIO.LOW)

 GPIO.output(in2,GPIO.LOW)

 GPIO.output(in3,GPIO.LOW)

 GPIO.output(in4,GPIO.LOW)

pin_list = [in1, in2, in3, in4]

def motor_control(motor_status, di):

 if(di > 10):

 j=0

 for i in motor_status:

 if(i):

 GPIO.output(pin_list[j],GPIO.HIGH)

 else:

 GPIO.output(pin_list[j],GPIO.LOW)

 j+=1

 else:

 stop()

def move(data):

 distance=ultrasonic()

 print(distance)

 if(data == b'forward'):

21 | P a g e

 ms=[0,1,1,0]

 motor_control(ms,distance)

 print('Done forward')

 elif(data == b'backward'):

 ms =[1,0,0,1]

 motor_control(ms,distance)

 print('Done backward')

 elif(data == b'left'):

 ms =[0,1,0,0]

 motor_control(ms,distance)

 time.sleep(6)

 stop()

 print('Done left')

 elif(data == b'right'):

 ms =[0,0,1,0]

 motor_control(ms,distance)

 time.sleep(6)

 stop()

 print('Done right')

 elif(data == b'stop'):

 stop()

 print('Done stop')

22 | P a g e

Code 4:

import bluetooth

import multiprocessing

import integratedv2 as iv2

import time

import socket

import TFLite_detection_webcam as tf

hostMACAddress = 'b8:27:eb:49:6a:de' # The MAC address of a Bluetooth

adapter on the server. The server might have multiple Bluetooth adapters.

port = 420# 1 is an arbitrary choice. However, it must match the port used by

the client.

backlog = 1

size = 1024

s = bluetooth.BluetoothSocket(bluetooth.RFCOMM)

s.bind((hostMACAddress,port))

s.listen(backlog)

flag = 0

def voiceRecognition():

23 | P a g e

 while(1):

 try:

 client, address = s.accept()

 data = client.recv(size)

 if data:

 if data == b'term':

 iv2.stop()

 flag = 1

 else:

 print(data)

 client.send(data)

 iv2.move(data)

 except:

 continue

def distanceCalculator():

 while(1):

 dis = iv2.ultrasonic()

 print(dis)

 if(dis < 20):

 iv2.stop()

 label = tf.objRec()

 print(label)

24 | P a g e

 time.sleep(5)

 ms = [1,0,0,1]

 distance = 30

 iv2.motor_control(ms,distance)

 time.sleep(3)

 print('sleep done')

 iv2.stop()

p1 = multiprocessing.Process(target = distanceCalculator)

p2 = multiprocessing.Process(target = voiceRecognition)

def doWork():

 p2.start()

 p1.start()

 while(flag == 0):

 try:

 if(flag == 1):

 p1.terminate()

 p2.terminate()

 s.close()

 exit()

 except KeyboardInterrupt:

 print("Termination of Program")

25 | P a g e

 p1.terminate()

 p2.terminate()

 s.close()

 exit()

doWork()

26 | P a g e

Code 5 : Object Detection using USB Webcam interfaced with

Raspberry Pi

######## Webcam Object Detection Using Tensorflow-trained Classifier

#########

This program uses a TensorFlow Lite model to perform object detection on

a live webcam

feed. It draws boxes and scores around the objects of interest in each frame

from the

webcam. To improve FPS, the webcam object runs in a separate thread from

the main program.

This script will work with either a Picamera or regular USB webcam.

Import packages

import os

import argparse

import cv2

import numpy as np

import sys

import time

from threading import Thread

import importlib.util

def objRec():

 # Define VideoStream class to handle streaming of video from webcam in

separate processing thread

27 | P a g e

 class VideoStream:

 """Camera object that controls video streaming from the Picamera"""

 def __init__(self,resolution=(640,480),framerate=30):

 # Initialize the PiCamera and the camera image stream

 self.stream = cv2.VideoCapture(0)

 ret = self.stream.set(cv2.CAP_PROP_FOURCC,

cv2.VideoWriter_fourcc(*'MJPG'))

 ret = self.stream.set(3,resolution[0])

 ret = self.stream.set(4,resolution[1])

 # Read first frame from the stream

 (self.grabbed, self.frame) = self.stream.read()

 # Variable to control when the camera is stopped

 self.stopped = False

 def start(self):

 # Start the thread that reads frames from the video stream

 Thread(target=self.update,args=()).start()

 return self

 def update(self):

 # Keep looping indefinitely until the thread is stopped

28 | P a g e

 while True:

 # If the camera is stopped, stop the thread

 if self.stopped:

 # Close camera resources

 self.stream.release()

 return

 # Otherwise, grab the next frame from the stream

 (self.grabbed, self.frame) = self.stream.read()

 def read(self):

 # Return the most recent frame

 return self.frame

 def stop(self):

 # Indicate that the camera and thread should be stopped

 self.stopped = True

 # Define and parse input arguments

 parser = argparse.ArgumentParser()

 #parser.add_argument('--modeldir', help='Folder the .tflite file is located in',

 #required=True)

 parser.add_argument('--graph', help='Name of the .tflite file, if different than

detect.tflite',

29 | P a g e

 default='detect.tflite')

 parser.add_argument('--labels', help='Name of the labelmap file, if different

than labelmap.txt',

 default='labelmap.txt')

 parser.add_argument('--threshold', help='Minimum confidence threshold for

displaying detected objects',

 default=0.5)

 parser.add_argument('--resolution', help='Desired webcam resolution in

WxH. If the webcam does not support the resolution entered, errors may

occur.',

 default='640x480')

 parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to

speed up detection',

 action='store_true')

 args = parser.parse_args()

 args.modeldir = 'Sample_TFLite_model'

 MODEL_NAME = args.modeldir

 GRAPH_NAME = args.graph

 LABELMAP_NAME = args.labels

 min_conf_threshold = float(args.threshold)

 resW, resH = args.resolution.split('x')

 imW, imH = int(resW), int(resH)

 use_TPU = args.edgetpu

 # Import TensorFlow libraries

30 | P a g e

 # If tflite_runtime is installed, import interpreter from tflite_runtime, else

import from regular tensorflow

 # If using Coral Edge TPU, import the load_delegate library

 pkg = importlib.util.find_spec('tflite_runtime')

 if pkg:

 from tflite_runtime.interpreter import Interpreter

 if use_TPU:

 from tflite_runtime.interpreter import load_delegate

 else:

 from tensorflow.lite.python.interpreter import Interpreter

 if use_TPU:

 from tensorflow.lite.python.interpreter import load_delegate

 # If using Edge TPU, assign filename for Edge TPU model

 if use_TPU:

 # If user has specified the name of the .tflite file, use that name, otherwise

use default 'edgetpu.tflite'

 if (GRAPH_NAME == 'detect.tflite'):

 GRAPH_NAME = 'edgetpu.tflite'

 # Get path to current working directory

 CWD_PATH = os.getcwd()

 # Path to .tflite file, which contains the model that is used for object detection

 PATH_TO_CKPT =

31 | P a g e

os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)

 # Path to label map file

 PATH_TO_LABELS =

os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)

 # Load the label map

 with open(PATH_TO_LABELS, 'r') as f:

 labels = [line.strip() for line in f.readlines()]

 # Have to do a weird fix for label map if using the COCO "starter model"

from

 # https://www.tensorflow.org/lite/models/object_detection/overview

 # First label is '???', which has to be removed.

 if labels[0] == '???':

 del(labels[0])

 # Load the Tensorflow Lite model.

 # If using Edge TPU, use special load_delegate argument

 if use_TPU:

 interpreter = Interpreter(model_path=PATH_TO_CKPT,

experimental_delegates=[load_delegate('libedgetpu.so.1.0')])

 print(PATH_TO_CKPT)

 else:

32 | P a g e

 interpreter = Interpreter(model_path=PATH_TO_CKPT)

 interpreter.allocate_tensors()

 # Get model details

 input_details = interpreter.get_input_details()

 output_details = interpreter.get_output_details()

 height = input_details[0]['shape'][1]

 width = input_details[0]['shape'][2]

 floating_model = (input_details[0]['dtype'] == np.float32)

 input_mean = 127.5

 input_std = 127.5

 # Initialize frame rate calculation

 frame_rate_calc = 1

 freq = cv2.getTickFrequency()

 # Initialize video stream

 videostream = VideoStream(resolution=(imW,imH),framerate=30).start()

 time.sleep(1)

 #for frame1 in camera.capture_continuous(rawCapture,

33 | P a g e

format="bgr",use_video_port=True):

 while True:

 # Start timer (for calculating frame rate)

 t1 = cv2.getTickCount()

 # Grab frame from video stream

 frame1 = videostream.read()

 # Acquire frame and resize to expected shape [1xHxWx3]

 frame = frame1.copy()

 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 frame_resized = cv2.resize(frame_rgb, (width, height))

 input_data = np.expand_dims(frame_resized, axis=0)

 # Normalize pixel values if using a floating model (i.e. if model is non-

quantized)

 if floating_model:

 input_data = (np.float32(input_data) - input_mean) / input_std

 # Perform the actual detection by running the model with the image as

input

 interpreter.set_tensor(input_details[0]['index'],input_data)

 interpreter.invoke()

34 | P a g e

 # Retrieve detection results

 boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding

box coordinates of detected objects

 classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class

index of detected objects

 scores = interpreter.get_tensor(output_details[2]['index'])[0] #

Confidence of detected objects

 #num = interpreter.get_tensor(output_details[3]['index'])[0] # Total

number of detected objects (inaccurate and not needed)

 # Loop over all detections and draw detection box if confidence is above

minimum threshold

 for i in range(len(scores)):

 if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):

 # Get bounding box coordinates and draw box

 # Interpreter can return coordinates that are outside of image

dimensions, need to force them to be within image using max() and min()

 ymin = int(max(1,(boxes[i][0] * imH)))

 xmin = int(max(1,(boxes[i][1] * imW)))

 ymax = int(min(imH,(boxes[i][2] * imH)))

 xmax = int(min(imW,(boxes[i][3] * imW)))

 cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)

 # Draw label

35 | P a g e

 object_name = labels[int(classes[i])] # Look up object name from

"labels" array using class index

 label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example:

'person: 72%'

 labelSize, baseLine = cv2.getTextSize(label,

cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size

 label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw

label too close to top of window

 cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10),

(xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED)

Draw white box to put label text in

 cv2.putText(frame, label, (xmin, label_ymin-7),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text

 #return label

 print(label)

 # Draw framerate in corner of frame

 cv2.putText(frame,'FPS:

{0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,

1,(255,255,0),2,cv2.LINE_AA)

 # All the results have been drawn on the frame, so it's time to display it.

 #cv2.imshow('Object detector', frame)

 # Calculate framerate

 t2 = cv2.getTickCount()

 time1 = (t2-t1)/freq

 frame_rate_calc= 1/time1

36 | P a g e

 # Press 'q' to quit

 if cv2.waitKey(1) == ord('q'):

 break

 # Clean up

 cv2.destroyAllWindows()

 videostream.stop()

37 | P a g e

OUTPUT FROM THE WEBCAM:

38 | P a g e

CHAPTER 5

CONCLUSION

The report has discussed the development of a “Voice Recognition and Object

Detection Rover”. The objective of this project was to develop the necessary

hardware and software to perform Voice Recognition and Object Detection

successfully.

This project can be upgraded to assist the visually impaired by providing

identification of objects in a 360-degree environment. To reduce the cost of a

power source, solar panels of good efficiency can be provided for the rover.

Also, a mobile application can be created to integrate the scripts, thus making

the process much more seamless.

This object detection model (COCO Dataset) has a moderate confidence rate

with medium level accuracy. Also the field of view of the camera detection is

linear and parallel to the path of the rover movement.

39 | P a g e

CHAPTER 6

REFERENCES

[1] Rahmadi Kurnia, Md. Altab Hossain, Akio Nakamura, and Yoshinori

Kuno, "Object Recognition through Human-Robot Interaction by Speech",

International Workshop on Robot and Human Interactive Communication,

pp. 619-624, 2004.

[2] Sajkowski, M., "Voice control of dual-drive mobile robots-survey of

algorithms", Robot Motion and Control, 2002. RoMoCo ’02., pp. 387-392,

2002.

[3] Peter X. Liu, A. D. C. Chan, R. Chen, K. Wang, Y. Zhu, "Voice Based

Robot Control", International Conference on Information Acquisition,

pp.543-547, 2005.

[4] Bojan Kulji, Simon Janos and Szakall Tibor, "Mobile robot controlled by

voice", International Symposium on Intelligent Systems and Informatics, pp.

189-192, 2007.

[5] A review and an approach for object detection in images January 2017

International Journal of Computational Vision and Robotics 7(1/2):196

[6] Microsoft COCO: Common Objects in Context: Tsung-Yi Lin, Michael

Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro

Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollár.

[7] Kannan, K. & Selvakumar, J. (2015). Arduino Based Voice Controlled

Robot”, International Research Journal of Engineering and Technology

(IRJET), Vol. 02, p-ISSN: 2395-0072, e-ISSN: 2395-0056.

