USN:	
------	--

CMR Institute of Technology, Bangalore DEPARTMENT OF MECHANICAL ENGINEERING II - INTERNAL ASSESSMENT

Semester: 4-CBCS 2018 Date: 22 Jun 2021

Subject: COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS (18MAT41)

Time: 09:00 AM - 10:00 AM

Faculty: Ms Girisha . A Max Marks: 50

Instruc	tions to Students :				
Attem	ot all questions				
	PARTA				
	Answer All Questions				
Q.No		Marks	СО	PO	BT/CL
1	Choose the correct option. If $f(z) = \underline{u + iv}$ is analytic then a) Only u is harmonic. b) Only v is harmonic. c) Both u and v are harmonic. d) None of the above.	2	CO1	PO1	L2
2	Choose the correct option. If $f(z)=u+iv$ then which of the following is true a) If $f(z)$ is analytic then u and v are orthogonal. b) If u and v are orthogonal then $f(z)$ is analytic. c) Both a and b are true. d) None of the above.	2	CO1	PO1	L2
3	Choose the correct option. If a transformation is conformal then a) Only magnitude of the angle is preserved. b) Always we get the same image in both z and w plane under any given function. c) Both magnitude and sense are preserved under the transformation. d) All transformations are conformal.	2	CO2	PO1	L1
4	Choose the correct option. Y=-c (a constant) under the transformation $w=z^2$ transformed in to a) A parabola symmetrical about imaginary axis. b) A parabola symmetrical about real axis with vertex $(-c^2, o)$ c) A parabola symmetrical about real axis with vertex (c^2, o) d) A circle with center as origin.	2	CO2	PO2	L3
5	Choose the correct option. The straight line parallel to y axis in the z-plane maps onto a circle with center origin and radius r in w -plane under the transformation. a) $w = z^2$ b) $w = e^z$ c) $w = z + \frac{1}{z}$ d) None of the above.	2	CO2	PO2	L3
6	Choose the correct option. A circle with center zero and radius r mapped in to what under the transformation $w = z + \frac{1}{z}$ a) Ellipse with foci (c^2, o) b) Ellipse with foci $(\pm 2, o)$ c) Hyperbola with foci $(\pm 2, o)$ d) None of the above.	2	CO2	PO2	L3
7	Choose the correct option. A circle with center zero and radius r mapped in to what under the transformation $w = z^2$ a) A circle with center at a and radius r b) A circle with center at 0 and radius r c) A circle with center at 0 and radius r^2 d) A parabola.	2	CO2	PO2	L3
8	Choose the correct option. The straight-line $y=c$ in the z-plane maps onto a straight line passing through origin in w-plane under the transformation. $a w=z^2$ $b w=e^z$ $c w=z+\frac{1}{z}$ $d v $	2	CO2	PO2	L3

9	Choose the correct option. The harmonic property in polar form is a) $u_{xx} + u_{yy} = 0$ b) $u_{rr} + u_{\sigma\sigma} = 0$ c) Both a and b are correct. d) None of the above	2	CO1	PO1	L1
10	Choose the correct option. Which of the following is false if $w = \frac{az+b}{cz+d}$? a) Bilinear transformations are conformal if $ad - bc \neq o$. b) Bilinear transformations are not conformal if $ad - bc \neq o$. c) Bilinear transformation is called as Mobius transformation. d) In $w = \frac{az+b}{cz+d}$ here a,b,c,d are all real or complex constants	2	CO2	PO2	L1
	PART B				
	Answer All Questions				
Q.No		Marks	СО	РО	BT/CL
11	Choose the correct option. If $\emptyset = u^2 + v^2$ and $f(z) = u + iv$ is analytic then $\emptyset_{xx} + \emptyset_{yy} = a$ a) 0 b) $ f'(z) ^2$ c) $4 f'(z) ^2$ d) None of the above.	3	CO1	PO2	L3
12	Choose the correct option. If $u = y + e^x cosy$ is harmonic then the harmonic conjugate is a) $c + e^x cosy$ b) $c + e^x cosy + x$ c) $c + e^x siny - x$ d) $c - e^x cosy - x$	3	CO1	PO2	L3
13	Choose the correct option. $u = \frac{\cos 2\sigma}{r^2}, r \neq 0 \text{ is}$ a) U is Harmonic. b) U is not harmonic. c) can't conclude since v is not given. d) None of the above	3	CO1	PO2	L3
14	Choose the correct option. when $w = \frac{1+iz}{1-iz}$ under this Bilinear Transformation what is the image of $ z < 1$. a) $u = 0$ b) $u < 0$ c) $u > 0$ d)None of the above	3	CO2	PO2	L3
15	Choose the correct option. Find the Bilinear Transformation which maps the points $0,1, \infty$ onto the points $-5,-1,3$ respectively. a) $w = \frac{3z+2}{z+1}$ b) $w = \frac{3z-5}{z+1}$ c) $w = \frac{3z}{z+1}$ d) $w = \frac{3z-1}{z-2}$	3	CO2	PO2	L3
16	Choose the correct option. If the Bilinear Transformation is $w = \frac{1-z}{z+1}$ what are the invariant points a) $-1 \pm \sqrt{2}$ b) $-2 \pm \sqrt{2}$ c) $-1 \pm \sqrt{3}$ d) $-2 \pm \sqrt{3}$	3	CO2	PO2	L3
17	Choose the correct option. Evaluate $I = \int_0^{2+i} (\overline{z})^2 dz$ along the straight Line $y = \frac{x}{2}$ a) $I = \frac{5}{3}(2+i)$ b) $I = \frac{5}{3}(2-i)$ c) $I = \frac{5}{3}(2-2i)$ d) $I = \frac{5}{3}(2+2i)$	3	CO2	PO2	L3

18	Choose the correct option. Evaluate $\int_C z ^2 dz$ where c is the line joining the points (1,1) to (0,1) a) $\frac{2}{4}$ b) $-\frac{4}{3}$ c) $-\frac{4i}{3}$ d) $\frac{4}{3}$	3	CO2	PO2	L3
19	Choose the correct option. Evaluate $\int_c (z-z^2) dz$ where 'c' is the upper half of the $ z =1$ where the angle increasing from 0 to π a) $\frac{4}{3}$ b) $-\frac{2}{3}$ c) $\frac{2}{3}$ d) none of the above.	3	CO2	PO2	L3
20	Choose the correct option. Evaluate $\int_C z dz$ in the following case where 'c' is the Left half of the circle $ z = 1$ from $-i$ to i a) $2i$ b) 2 c) $-2i$ d) none of the above.	3	CO2	PO2	L3