

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - I

Sub: Object Oriented Programming with Java Code: 20MCA22

Date: 22/06/2021 Duration: 90 mins Max Marks: 50 Sem: I-A&B Branch: MCA

Answer ONE FULL QUESTION from each part

 Marks
OBE

CO RBT

Part - I

 1 (a) Briefly explain any five features of Java. 6 CO1 L2

 (b) What is for-each loop? Write its syntax. 4 CO1 L1

(OR)

2 Write a program in Java for String handling which performs the following:

i. Checks the capacity of StringBuffer objects.

ii. Reverses the contents of a string given on console and converts the resultant string in upper case.

iii. Reads a string from console and appends it to the resultant string of ii.

10 CO1 L3

Part – II

 3 (a) What is type casting? What is meant by automatic type promotion? Give an example. 5 CO1 L2

 (b) What is „this‟ keyword? Demonstrate „this‟ with a suitable program. 5 CO2 L2

(OR)

4 What is constructor? Explain different types of constructor with example 10 CO1 L2

PART - III

 5 (a) Explain bitwise operator. 5 CO1 L1

 (b) What are various access specifiers in Java? List out the behavior of each of them. 5 CO2 L2

(OR)

 6 (a) Discuss usage of final keyword in Java. Give suitable examples. 5 CO2 L2

 (b) Write a java program to print the following pattern:

1

123

1234

12345

5 CO1 L5

Part – IV

7 What is super keyword? Explain use of super with example. 10 CO2 L2

(OR)

8 (a) Distinguish between method overriding and method overloading with suitable examples. 5 CO2 L3

(b) What is Inner class? Write a program to demonstrate inner class 5 CO2 L1

Part – V

 9 What is inheritance? Explain the order of constructor execution in multilevel hierarchy of class. 10 CO2 L2

(OR)

 10 Create an abstract class called Employee. Include the members: Name, EmpID and an abstract method cal_sal().

Create two inherited classes SoftwareEng (with the members basic and DA) and HardwareEng (with

members basic and TA). Implement runtime polymorphism (dynamic method dispatch) to display salary

of different employees by creating array of references to superclass.

10 CO2 L5

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – June. 2021

Sub: OS with Unix Sub Code: 20MCA22

Date: 22-06-2021 Duration:
90

min‟s

Max

Marks:
50 Sem II

 Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS

OBE

CO

RBT

1a Simple :

Java is Easy to write and more readable and eye catching.

Java has a concise, cohesive set of features that makes it easy to learn and use.

Most of the concepts are drew from C++ thus making Java learning simpler.

Secure :

Java program cannot harm other system thus making it secure.

Java provides a secure means of creating Internet applications.

Java provides secure way to access web applications.

Portable :

Java programs can execute in any environment for which there is a Java run-time system.(JVM)

Java programs can be run on any platform (Linux,Window,Mac)

Java programs can be transferred over world wide web (e.g applets)

Object-oriented :

Java programming is object-oriented programming language.

Like C++ java provides most of the object oriented features.

Java is pure OOP. Language. (while C++ is semi object oriented)

Robust :

Java encourages error-free programming by being strictly typed and performing run-time checks.

6 CO1 L2

1b For-each loop is used to access the elements of an array or list. We can access the elements

directly instead of index. The type of the loop variable and array type should be the same.

Syntax: for(type var:array)

 {

 Body of the loop;

 }

Example:

 class ForEachExample1{

 public static void main(String args[]){

 int arr[]={12,13,14,44};

 for(int i:arr){

 System.out.println(i);

 }}

4 CO1 L1

2. import java.util.Scanner;

public class stringclass {

public static void main(String args[])

{

StringBuffer sb=new StringBuffer("MCA");

System.out.println("length="+sb.length());

10 CO1 L3

System.out.println("total capacity="+sb.capacity());

String s = new String("Aslam");

s=s.toUpperCase();

System.out.println(s);

String reverse =new StringBuffer(s).reverse().toString();

System.out.println("reversed string is"+reverse);

Scanner user = new Scanner(System.in);

System.out.println("enter any string");

String s3=user.next();

reverse=reverse.concat(s3);

System.out.println(reverse);

}
}

3.a Type casting is needed when we want to store a value of one type into a variable of another type.

There are two types of type casting .They are

1. Implicit Casting

2. Explicit Casting

Implicit Casting:

 Automatic Type casting take place when,

 the two types are compatible

 the target type is larger than the source type

Example :

class Test

{

 public static void main(String[] args)

 {

 int i = 100;

 //automatic type conversion

 long l = i;

 //automatic type conversion

 float f = l;

 System.out.println("Int value "+i);

 System.out.println("Long value "+l);

 System.out.println("Float value "+f);

 }

}

Narrowing or Explicit type conversion

When we are assigning a larger type value to a variable of smaller type, then we need to perform

explicit type casting.

Example :public class Test{

 Public static void main(String[] k)

 {

 Double d=100.87;

 Long l=(long)d;

 int i=(int)l;

 System.out.println(“Double value”+d);

 System.out.println(“Long value”+l);

 System.out.println(“Int value”+i);

 }

}

5 CO1 L2

3.b The „this‟ keyword is used for two purposes

1. It is used to point to the current active object.

2. Whenever the formal parameters and data members of a class are similar, to differentiate the

data members of a class from formal arguments the data members of a class are preceeded

with „this‟.

This(): It is used for calling current class default constructor from current class parameterized

5 CO2 L2

constructor.

This(…): It is used for calling current class parameterized constructor from other category

constructors of the same class.

Ex: class Test

 {

 int a,b;

 Test()

 {

 This(10);

System.out.println(“I am from default constructor”);

a=1;

b=2;

System.out.println(“Value of a=”+a);

System.out.println(“Value of b=”+b);

 }

 Test(int x)

 {

 This(100,200);

System.out.println(“I am from parameterized constructor”);

a=b=x;

System.out.println(“Value of a=”+a);

System.out.println(“Value of b=”+b);

 }

 Test(int a,int b)

 {

System.out.println(“I am from double parameterized constructor”)

 this.a=a+5;

This.b=b+5;

System.out.println(“Value of instance variable a=”+this.a);

System.out.println(“Value of instance variable b=”+this.b);

System.out.println(“Value of a=”+a);

System.out.println(“Value of b=”+b);

 }

}

Class TestDemo3

{

 Public static void main(String k[])

 {

 Test t1=new Test();

 }

}

4
A constructor initializes an object when it is created. It has the same name as its class and is

syntactically similar to a method. However, constructors have no explicit return type.

Typically, you will use a constructor to give initial values to the instance variables defined by the

class, or to perform any other start-up procedures required to create a fully formed object.

All classes have constructors, whether you define one or not, because Java automatically provides a

default constructor that initializes all member variables to zero. However, once you define your own

constructor, the default constructor is no longer used.

Syntax

Following is the syntax of a constructor −

class ClassName {

 ClassName() {

 }

}

Types of Constructors

There are three types of constructors: Default, No-arg constructor and Parameterized.

Default constructor: If you do not implement any constructor in your class, Java compiler inserts

a default constructor into your code on your behalf. This constructor is known as default constructor.

You would not find it in your source code(the java file) as it would be inserted into the code during

compilation and exists in .class file. This process is shown in the diagram below:

no-arg constructor:

Constructor with no arguments is known as no-arg constructor. The signature is same as default

constructor, however body can have any code unlike default constructor where the body of the

constructor is empty.

class Demo
{
 public Demo()
 {
 System.out.println("This is a no argument constructor");
 }
 public static void main(String args[]) {
 new Demo();
 }
}

Parameterized constructor

Constructor with arguments(or you can say parameters) is known as Parameterized constructor.

public class Employee {

 int empId;

 String empName;

10 CO1 L2

https://beginnersbook.com/2014/01/default-constructor-java-example/
https://beginnersbook.com/2014/01/parameterized-constructor-in-java-example/

 //parameterized constructor with two parameters

 Employee(int id, String name){

 this.empId = id;

 this.empName = name;

 }

 void info(){

 System.out.println("Id: "+empId+" Name: "+empName);

 }

 public static void main(String args[]){

 Employee obj1 = new Employee(10245,"Chaitanya");

 Employee obj2 = new Employee(92232,"Negan");

 obj1.info();

 obj2.info();

 }

}

Copy Constructor

A copy constructor is used for copying the values of one object to another object.

class JavaExample{

 String web;

 JavaExample(String w){

 web = w;

 }

JavaExample(JavaExample je){

 web = je.web;

 }

 void disp(){

 System.out.println("Website: "+web);

 }

 public static void main(String args[]){

 JavaExample obj1 = new JavaExample("BeginnersBook");

 /* Passing the object as an argument to the constructor

 * This will invoke the copy constructor

 */

 JavaExample obj2 = new JavaExample(obj1);

 obj1.disp();

 obj2.disp();

 }

}

5a Java defines several bitwise operators that can be applied to the integer types, long, int, short, char,

and byte.These operators act upon the individual bits of their operands.

The Bitwise Logical Operators
— The bitwise logical operators are &, |, ^, and ~.

The Bitwise NOT Also called the bitwise complement, the unary NOT operator, ~, inverts all

of the bits of its operand.

For example, the number 42, which has the following bit pattern: 00101010 becomes

11010101 after the NOT operator is applied.

The Bitwise AND The AND operator, &, produces a 1 bit if both operands are also 1. A zero is

produced in all other cases. Here is an example:

00101010 42

 & 00001111 15

00001010 10

The Bitwise OR The OR operator, |, combines bits such that if either of the bits in the operands is a

1, then the resultant bit is a 1, as shown here:

00101010 42

| 00001111 15

00101111 47

The Bitwise XOR The XOR operator, ^, combines bits such that if exactly one operand is 1, then the

result is 1. Otherwise, the result is zero.

00101010 42

 ^ 00001111 15

00100101 37

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times.

It has this general form: value << num

Here, num specifies the number of positions to left-shift the value in value.That is, the << moves all

of the bits in the specified value to the left by the number of bit positions specified by num.

For each shift left, the high-order bit is shifted out (and lost), and a zero is brought in on the right.

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of times.

Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value.That is, the >> moves all

of the bits in the specified value to the right the number of bit positions specified by num.

The following code fragment shifts the value 32 to the right by two positions, resulting in a being

set to 8:
int a = 32 (100000);

a = a >> 2; // a now contains 8

int a = 35;

a = a >> 2; // a still contains 8

 5 CO1 L1

5.b The access specifiers also determine which data members (methods or fields) of a class can be

accessed by other data members of classes or packages etc.

Access modifiers in Java allow us to set the scope or accessibility or visibility of a data member be

it a field, constructor, class, or method.

Types Of Access Modifiers In Java

Java provides four types of access specifiers that we can use with classes and other entities.

• Private: The access level of a private modifier is only within the class. It cannot be accessed

from outside the class.

• Default: The access level of a default modifier is only within the package. It cannot be accessed

from outside the package. If you do not specify any access level, it will be the default.

• Protected: The access level of a protected modifier is within the package and outside the

package through child class. If you do not make the child class, it cannot be accessed from

outside the package.

• Public: The access level of a public modifier is everywhere. It can be accessed from within the

class, outside the class, within the package and outside the package.

Private Access Modifier

class A

{

private int data=40;

private void msg(){System.out.println("Hello java");}

}

public class Simple{

 public static void main(String args[]){

 A obj=new A();

 System.out.println(obj.data);//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

Default Access Modifier

//A.java

5 CO2 L2

package pack;

class A

{

 void msg()

 {

 System.out.println("Hello");

 }

}

//B.java

package mypack;

import pack.*;

class B

{

 public static void main(String args[])

 {

 A obj = new A();//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

Protected Access Modifier

//save by A.java

package pack;

public class A{

protected void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B extends A{

 public static void main(String args[]){

 B obj = new B();

 obj.msg();

 }

}

Public Access Modifier

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg();

 }

}
6a Final keyword is used to denote constants. It can be used with variables, methods, and classes.

Once any entity (variable, method or class) is declared final, it can be assigned only once. That is,

 If you make any variable as final, you cannot change the value of final variable(It will be

constant).

5 CO2 L2

 A final method cannot be overridden. This means even though a sub class can call the final

method of parent class without any issues but it cannot override it.

 If you make any class as final, you cannot extend it.

class FinalVariable

{

 public static void main(String[] args)

 {

 final int hours=24;

 System.out.println("Hours in 6 days = " + hours * 6);

 }

}

b. Final Method:

class X

{

 final void getMethod()

 {

 System.out.println(“X method has been called”);

 }

}
class Y extends X

{

 void getMethod() //cannot override

 {

 System.out.println(“Y method has been called”);

 }

}
class FinalMethod

{

 public static void main(String[] args)

 {

 Y obj = new Y();

 obj.getMethod();

 }

}

c. Final Class

final class X

{

 //properties and methods of class X

}
class Y extends X

{

 //properties and methods of class Y

}
class FinalClass

{

 public static void main(String args[]) {}

}

6.b import java.util.Scanner;

public class Exercise16 {

 public static void main(String[] args)

{

 int i,j,n;

 System.out.print("Input number of rows : ");

 Scanner in = new Scanner(System.in);

 n = in.nextInt();

 for(i=1;i<=n;i++)

 {

 for(j=1;j<=i;j++)

 System.out.print(j);

 System.out.println("");

 }

}

}

5 CO1 L5

7 • The super keyword refers to superclass (parent) objects.

• The most common use of the super keyword is to eliminate the confusion between super classes

and subclasses that have methods with the same name.

10 CO2 L2

1) super is used to refer immediate parent class instance variable.

We can use super keyword to access the data member or field of parent class. It is used if parent class

and child class have same fields.

1. class Animal{

2. String color="white";

3. }

4. class Dog extends Animal{

5. String color="black";

6. void printColor(){

7. System.out.println(color);//prints color of Dog class

8. System.out.println(super.color);//prints color of Animal class

9. }

10. }

11. class TestSuper1{

12. public static void main(String args[]){

13. Dog d=new Dog();

14. d.printColor();

15. }}

2) super can be used to invoke parent class method

The super keyword can also be used to invoke parent class method. It should be used if subclass

contains the same method as parent class. In other words, it is used if method is overridden.

1. class Animal{

2. void eat(){System.out.println("eating...");}

3. }

4. class Dog extends Animal{

5. void eat(){System.out.println("eating bread...");}

6. void bark(){System.out.println("barking...");}

7. void work(){

8. super.eat();

9. bark();

10. }

11. }

12. class TestSuper2{

13. public static void main(String args[]){

14. Dog d=new Dog();

15. d.work();

16. }}

3) super is used to invoke parent class constructor.

The super keyword can also be used to invoke the parent class constructor. Let's see a simple

example:

1. class Animal{

2. Animal(){System.out.println("animal is created");}

3. }

4. class Dog extends Animal{

5. Dog(){

6. super();

7. System.out.println("dog is created");

8. }

9. }

10. class TestSuper3{

11. public static void main(String args[]){

12. Dog d=new Dog();

13. }}

8a. There are many differences between method overloading and method overriding in java. A list of

differences between method overloading and method overriding are given below:

5 CO2 L3

8b In Java, just like methods, variables of a class too can have another class as its member. Writing a

class within another is allowed in Java. The class written within is called the nested class, and the

class that holds the inner class is called the outer class.

5 CO2 L1

Syntax

Following is the syntax to write a nested class. Here, the class Outer_Demois the outer class and the

class Inner_Demo is the nested class.

class Outer_Demo {

class Nested_Demo {

}

}

Nested classes are divided into two types −

• • Non-static nested classes − These are the non-static members of a class.

• • Static nested classes − These are the static members of a class.

Inner classes are a security mechanism in Java. We know a class cannot be associated with the access

modifier private, but if we have the class as a member of other class, then the inner class can be made

private. And this is also used to access the private members of a class.

Inner classes are of three types depending on how and where you define them. They are −

• • Inner Class

• • Method-local Inner Class

• • Anonymous Inner Class

Inner Class

Creating an inner class is quite simple. You just need to write a class within a class. Unlike a class, an

inner class can be private and once you declare an inner class private, it cannot be accessed from an

object outside the class.

Following is the program to create an inner class and access it. In the given example, we make the

inner class private and access the class through a method.

Example

class Outer_Demo {

int num;

// inner class

private class Inner_Demo {

public void print() {

System.out.println("This is an inner class");

}

}

// Accessing he inner class from the method within

void display_Inner() {

Inner_Demo inner = new Inner_Demo();

inner.print();

}

}

public class My_class {

public static void main(String args[]) {

// Instantiating the outer class

Outer_Demo outer = new Outer_Demo();

// Accessing the display_Inner() method.

outer.display_Inner();

}

}

9 The process by which one class acquires the properties(data members) and functionalities(methods) of

another class is called inheritance. The aim of inheritance is to provide the reusability of code so that

a class has to write only the unique features and rest of the common properties and functionalities can

be extended from the another class.

Child Class:
The class that extends the features of another class is known as child class, sub class or derived class.

Parent Class:
The class whose properties and functionalities are used(inherited) by another class is known as parent

class, super class or Base class.

10 CO2 L2

Order of execution of constructors in inheritance relationship is from base /parent class to derived /

child class.

We know that when we create an object of a class then the constructors get called automatically.

In inheritance relationship, when we create an object of a child class, then first base class constructor

and then derived class constructor get called implicitly.

NOTE: We cannot call a class constructor explicitly using an object or say manually.

If we create object of bottom most derived class i.e. of Testing class in main() program, then

constructors of Design class, Coding class and then Testing class will be called.

class Design {

 Design(){

 System.out.println("Design()...");

 }

}

class Coding extends Design {

 Coding(){

 System.out.println("coding()...");

 }

}

class Testing extends Coding {

 Testing()

 {

 System.out.println("Testing()...");

 }

}

public class TestConstructorCallOrder {

 public static void main(String[] args) {

 //Create object of bottom most class object

 System.out.println("Constructor call order...");

 new Testing();

 }

}

OUTPUT:
Constructor call order…

Design()…

coding()…

Testing()…

10 abstract class Shape

{

final double PI= 3.1416;

abstract double area();

}

10 CO2 L5

class Triangle extends Shape

{

int b, h;

Triangle(int x, int y)

{

b=x;

h=y;

}

double area()

{

System.out.print("\nArea of Triangle is:");

return 0.5*b*h;

}

}

class Circle extends Shape

{

int r;

Circle(int rad)

{

r=rad;

}

double area()

{

System.out.print("\nArea of Circle is:");

return PI*r*r;

}

}

class Rectangle extends Shape

{

int a, b;

Rectangle(int x, int y)

{

a=x;

b=y;

}

double area()

{

System.out.print("\nArea of Rectangle is:");

return a*b;

}

}

public class AbstractDemo

{

public static void main(String args[])

{

Shape r[]={new Triangle(3,9), new Rectangle(9,6),new Circle(4)};

for(int i=0;i<3;i++) System.out.println(r[i].area());

}

}

