

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test – I, June 2021

Sub: SOFTWARE ENGINEERING Code: 20MCA24

Date: 23-6-2021 Duration: 90 mins Max Marks: 50 Sem: II Branch: MCA

 Answer ONE FULL QUESTION from each part Marks
OBE

CO RBT

 Part-I

 1 (a) What is software process model? Explain the essential attributes of good software [6] CO1 L2

 (b) Describe the difference between software engineering and system engineering

product

 [4]
CO1 L3

(OR)

2 Discuss the various issues in software engineering professional responsibility

and code of ethics

[10]
CO1 L2

 Part-II

3 (a) Discuss the key challenges facing software engineering professionals that are

common to all software processes
[4] CO2 L2

(b) Explain the phases of RUP with a neat diagram. [6] CO2 L2

(OR)

4 Discuss the process involved in waterfall and incremental development model with

advantages and disadvantages.
[10] CO2 L2

Part-III

5 (a) What are the various techniques used for requirements elicitation and analysis?

Explain any in detail.

[10] CO2 L2

(OR)

6 (a) Explain the characteristic features and Structure of a software requirements

document.
[6] CO2 L2

(b) Justify which process model will be suitable to design insulin pump system [4] CO2 L3

 Part-IV

7 Explain in detail about extreme programming. [10] CO2 L2

(OR)

8 Describe Requirements Change Management Process and planning.

[10] CO1 L2

 Part-V

9 (a) Define: (i) Functional requirements and (ii) Non-functional requirements [4] CO1 L1

 (b) Explain the different metrics of non-functional requirements. [6] CO1 L2

(OR)

10 Write Short Notes on: a) requirement specification b)View point, stockholders ,

c) scenario techniques, d) Ethnography e). Feasibility study
10 CO3 L2

1. (a) What is software process model? Explain the essential attributes of good software

A software process model (sometimes called a Software Development Life Cycle or SDLC model) is a

simplified representation of a software process. Each process model represents a process from a particular

perspective and thus only provides partial information about that process. For example, a process activity

model shows the activities and their sequence but may not show the roles of the people involved in these

activities. These generic models are high-level, abstract descriptions of software processes that can be used to

explain different approaches to software development. You can think of them as process frameworks that may

be extended and adapted to create more specific software engineering processes.

Essential attributes of a good software:

1. (b) Describe the difference between software engineering and system engineering product

01.

A System Engineer is a person who

deals with the overall management of

engineering projects during their life

cycle (focusing more on physical

aspects).

A Software Engineer is a person who

deals with the designing and developing

good quality of software

applications/software products.

02.

System Engineers follows an

interdisciplinary approach governing

the total technical and managerial

effort required to transform

requirements into solutions.

Software Engineers follows a systematic

and disciplined approach for software

design, development, deployment and

maintenance of software applications.

03.

In general they are concerned with all

aspects of computer based system

development including hardware,

software and process engineering.

In general they are concerned with all

aspects of software development,

infrastructure, control, applications and

databases in the system.

04.

One thing software engineering can

learn from system engineering i.e

Consideration of trade-offs and use of

framework methods.

One thing system engineering can learn

from software engineering i.e

Disciplined approach to cost estimation.

05.

System engineers mostly focus on

users and domains.

Software engineers mostly focus on

developing good software.

06.

Systems Engineering Methods are

Stakeholder Analysis, Interface

Specification, Design Tradeoffs,

Configuration Management,

Systematic Verification and

Validation, Requirements Engineering

etc.

Software Engineering Methods are

Modeling, Incremental Verification and

Validation, Process Improvement,

Model-Driven Development, Agile

Methods, Continuous Integration etc.

07.

It ensures correct external interfaces,

interfaces among subsystems and

software.

It makes interfaces among software

module, data and communication path

work.

08.

System Engineers requires a broader

education background like

Engineering, Mathematics and

Computer science etc.

While Software Engineers requires

Computer Science or Computer

Engineering background.

2. Discuss the various issues in software engineering professional responsibility and code of ethics.

Software Engineering Professional Responsibility:

1. Confidentiality You should normally respect the confidentiality of your employers or clients regardless of

whether or not a formal confidentiality agreement has been signed.

2. Competence You should not misrepresent your level of competence. You should not knowingly accept

work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the use of intellectual property

such as patents and copyright. You should be careful to ensure that the intellectual property of employers and

clients is protected.

4. Computer misuse You should not use your technical skills to misuse other people’s computers.

Computer misuse ranges from relatively trivial (game playing on an employer’s machine) to extremely

serious (dissemination of viruses or other malware).

3. (a) Discuss the key challenges facing software engineering professionals that are common to all software

processes

Software engineering employs a well-defined and systematic approach to develop software. This approach

is considered to be the most effective way of producing high-quality software. However, despite this

systematic approach in software development, there are still some serious challenges faced by software

engineering. Some of these challenges are listed below.

1. The methods used to develop small or medium-scale projects are not suitable when it comes to the

development of large-scale or complex systems.

2. Changes in software development are unavoidable. In today’s world, changes occur rapidly and

accommodating these changes to develop complete software is one of the major challenges faced

by the software engineers.

3. The advancement in computer and software technology has necessitated for the changes in

nature of software systems. The software systems that cannot accommodate changes are not of

much use. Thus, one of the challenges of software engineering is to produce high quality

software adapting to the changing needs within acceptable schedules. To meet this challenge,

the object-oriented approach is preferred, but accommodating changes to software and its

maintenance within acceptable cost is still a challenge.

4. Informal communications take up a considerable portion of the time spent on software projects.

Such wastage of time delays the completion of projects in the specified time.

5. The user generally has only a vague idea about the scope and requirements of the software

system. This usually results in the development of software, which does not meet the user’s

requirements.

6. Changes are usually incorporated in documents without following any standard procedure. Thus,

verification of all such changes often becomes difficult.

7. The development ofl1igh-quality and reliable software requires the software to be thoroughly

tested. Though thorough testing of software consumes the majority of resources,

underestimating it because of any reasons deteriorates the software quality.

In addition to the above-mentioned key challenges, the responsibilities of the system analyst, designers, and

programmers are usually not well defined. Also, if the user requirements are not precisely defined, software

developers can misinterpret the meaning. All these challenges need to be addressed in order to ensure that

the software is developed within the specified time and estimated costs and also meets the requirements

specified by the user.

3.(b) Explain the phases of RUP with a neat diagram

The Rational Unified Process:

 A modern generic process derived from the work on the UML and associated process.

 Brings together aspects of the 3 generic process models discussed previously.

 Normally described from 3 perspectives

 A dynamic perspective that shows phases over time;

 A static perspective that shows process activities;

 A practive perspective that suggests good practice.

4. Discuss the process involved in waterfall and incremental development model with advantages and

disadvantages

Waterfall Model:

 There are separate identified phases in the waterfall model:

 Requirements analysis and definition

 System and software design

 Implementation and unit testing

 Integration and system testing

 Operation and maintenance

 The main drawback of the waterfall model is the difficulty of accommodating change after the

process is underway. In principle, a phase has to be complete before moving onto the next phase.

Problems:

 Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing

customer requirements.

 Therefore, this model is only appropriate when the requirements are well-understood and

changes will be fairly limited during the design process.

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems engineering projects where a system is

developed at several sites.

In those circumstances, the plan-driven nature of the waterfall model helps coordinate the work.

Incremental Development Model:

 The cost of accommodating changing customer requirements is reduced.

 The amount of analysis and documentation that has to be redone is much less than is required

with the waterfall model.

 It is easier to get customer feedback on the development work that has been done.

 Customers can comment on demonstrations of the software and see how much has been

implemented.

 More rapid delivery and deployment of useful software to the customer is possible.

 Customers are able to use and gain value from the software earlier than is possible with a

waterfall process.

Problems:

 The process is not visible.

 Managers need regular deliverables to measure progress. If systems are developed quickly, it

is not cost-effective to produce documents that reflect every version of the system.

 System structure tends to degrade as new increments are added.

 Unless time and money is spent on refactoring to improve the software, regular change tends

to corrupt its structure. Incorporating further software changes becomes increasingly difficult

and costly.

5. What are the various techniques used for requirements elicitation and analysis? Explain any in detail

Requirements elicitation and analysis:

 Sometimes called requirements elicitation or requirements discovery.

 Involves technical staff working with customers to find out about the application domain, the

services that the system should provide and the system’s operational constraints.

 May involve end-users, managers, engineers involved in maintenance, domain experts, trade unions,

etc. These are called stakeholders

 Software engineers work with a range of system stakeholders to find out about the application

domain, the services that the system should provide, the required system performance, hardware

constraints, other systems, etc.

 Stages include:

 Requirements discovery,

 Requirements classification and organization,

 Requirements prioritization and negotiation,

 Requirements specification.

Process Activities:

 Requirements discovery

 Interacting with stakeholders to discover their requirements. Domain requirements are also

discovered at this stage.

 Requirements classification and organization

 Groups related requirements and organizes them into coherent clusters.

 Prioritization and negotiation

 Prioritizing requirements and resolving requirements conflicts.

 Requirements specification

 Requirements are documented and input into the next round of the spiral.

6. (a) Explain the characteristic features and Structure of a software requirements document

Following are the characteristics of a good SRS document:

1. Correctness:

User review is used to ensure the correctness of requirements stated in the SRS. SRS is said to

be correct if it covers all the requirements that are actually expected from the system.

2. Completeness:

Completeness of SRS indicates every sense of completion including the numbering of all the

pages, resolving the to be determined parts to as much extent as possible as well as covering all

the functional and non-functional requirements properly.

3. Consistency:

Requirements in SRS are said to be consistent if there are no conflicts between any set of

requirements. Examples of conflict include differences in terminologies used at separate

places, logical conflicts like time period of report generation, etc.

4. Unambiguousness:

A SRS is said to be unambiguous if all the requirements stated have only 1 interpretation. Some of

the ways to prevent unambiguousness include the use of modelling techniques like ER diagrams,

proper reviews and buddy checks, etc.

5. Ranking for importance and stability:

There should a criterion to classify the requirements as less or more important or more specifically

as desirable or essential. An identifier mark can be used with every requirement to indicate its rank

or stability.

6. Modifiability:

SRS should be made as modifiable as possible and should be capable of easily accepting changes

to the system to some extent. Modifications should be properly indexed and cross-referenced.

7. Verifiability:

A SRS is verifiable if there exists a specific technique to quantifiably measure the extent to which

every requirement is met by the system. For example, a requirement stating that the system must

be user-friendly is not verifiable and listing such requirements should be avoided.

8. Traceability:

One should be able to trace a requirement to design component and then to code segment in the

program. Similarly, one should be able to trace a requirement to the corresponding test cases.

9. Design Independence:

There should be an option to choose from multiple design alternatives for the final system. More

specifically, the SRS should not include any implementation details.

10. Testability:

A SRS should be written in such a way that it is easy to generate test cases and test plans from the

document.

11. Understandable by the customer:

An end user maybe an expert in his/her specific domain but might not be an expert in computer

science. Hence, the use of formal notations and symbols should be avoided to as much extent as

possible. The language should be kept easy and clear.

12. Right level of abstraction:

If the SRS is written for the requirements phase, the details should be explained explicitly.

Whereas, for a feasibility study, fewer details can be used. Hence, the level of abstraction varies

according to the purpose of the SRS.

Structure of SRS:

1. Introduction :

 (i) Purpose of this Document –

At first, main aim of why this document is necessary and what’s purpose of document

is explained and described.

 (ii) Scope of this document –

In this, overall working and main objective of document and what value it will

provide to customer is described and explained. It also includes a description of

development cost and time required.

 (iii) Overview –

In this, description of product is explained. It’s simply summary or overall review of

product.

2. General description :

In this, general functions of product which includes objective of user, a user characteristic,

features, benefits, about why its importance is mentioned. It also describes features of user

community.

3. Functional Requirements :

In this, possible outcome of software system which includes effects due to operation of program

is fully explained. All functional requirements which may include calculations, data processing,

etc. are placed in a ranked order.

4. Interface Requirements :

In this, software interfaces which mean how software program communicates with each other or

users either in form of any language, code, or message are fully described and explained.

Examples can be shared memory, data streams, etc.

5. Performance Requirements :

In this, how a software system performs desired functions under specific condition is explained.

It also explains required time, required memory, maximum error rate, etc.

6. Design Constraints :

In this, constraints which simply means limitation or restriction are specified and explained for

design team. Examples may include use of a particular algorithm, hardware and software

limitations, etc.

7. Non-Functional Attributes :

In this, non-functional attributes are explained that are required by software system for better

performance. An example may include Security, Portability, Reliability, Reusability, Application

compatibility, Data integrity, Scalability capacity, etc.

8. Preliminary Schedule and Budget :

In this, initial version and budget of project plan are explained which include overall time

duration required and overall cost required for development of project.

9. Appendices :

In this, additional information like references from where information is gathered, definitions of

some specific terms, acronyms, abbreviations, etc. are given and explained.

6.(b) Justify which process model will be suitable to design insulin pump system

It is important to note that part of software engineering includes choosing the right method for the type of

system being built. For example, the insulin pump control system, which analyzes information from the

blood collected by a sensor, and then controls the dose of insulin being administered to an individual with

diabetes. This is considered a safety-critical system, since the patient’s life depends on the reliability of the

system. In this case, the design process should be determined by the requirements of the system, which

include delivering insulin when required, and correctly administering differing levels of insulin, depending

on readings from the sensor. This system would benefit most from the waterfall model of development,

since safety is critical, and all specifications should be thoroughly documented and tested before being used

on a human.

7. Explain in detail about extreme programming

The most significant approach to changing software development culture was the development of Extreme

Programming (XP). The name was coined by Kent Beck (Beck 1998) because the approach was developed

by pushing recognized good practice, such as iterative development, to “extreme” levels. For example, in

XP, several new versions of a system may be developed by different programmers, integrated, and tested in

a day. In XP, requirements are expressed as scenarios (called user stories), which are implemented directly

as a series of tasks. Programmers work in pairs and develop tests for each task before writing the code. All

tests must be successfully executed when new code is integrated into the system. There is a short time gap

between releases of the system. Extreme programming was controversial as it introduced a number of agile

practices that were quite different from the development practice of that time.

8. Describe Requirements Change Management Process and planning.

 Deciding if a requirements change should be accepted

 Problem analysis and change specification

• During this stage, the problem or the change proposal is analyzed to check that it is

valid. This analysis is fed back to the change requestor who may respond with a more

specific requirements change proposal, or decide to withdraw the request.

 Change analysis and costing

• The effect of the proposed change is assessed using traceability information and

general knowledge of the system requirements. Once this analysis is completed, a

decision is made whether or not to proceed with the requirements change.

 Change implementation

• The requirements document and, where necessary, the system design and

implementation, are modified. Ideally, the document should be organized so that

changes can be easily implemented.

9. (a) Define: (i) Functional requirements and (ii) Non-functional requirements

 Functional requirements

 Statements of services the system should provide, how the system should react to particular

inputs and how the system should behave in particular situations.

 May state what the system should not do.

 Non-functional requirements

 Constraints on the services or functions offered by the system such as timing constraints,

constraints on the development process, standards, etc.

 Often apply to the system as a whole rather than individual features or services.

9. (b) Explain the different metrics of non-functional requirements

Property Measure

Speed Processed transactions/second

User/event response time

Screen refresh time

Size Mbytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent

statements

Number of target systems

10. Write Short Notes on: a) requirement specification b)View point, stockholders , c) scenario techniques,

d) Ethnography e). Feasibility study

(a). Requirement Specification

Requirements specification The initial requirements for the system are proposed. These do not have to be

elaborated in detail but should include brief descriptions of essential requirements and desirable system

features. Requirements specification is the activity of translating the information gathered during

requirements analysis into a document that defines a set of requirements. Two types of requirements may be

included in this document. User requirements are abstract statements of the system requirements for the

customer and end-user of the system; system requirements are a more detailed description of the

functionality to be provided. In agile methods, requirements specification is not a separate activity but is

seen as part of system development. Requirements are informally specified for each increment of the system

just before that increment is developed. Requirements are specified according to user priorities. The

elicitation of requirements comes from users who are part of or work closely with the development team.

(b) Viewpoint

A viewpoint is a way of organising the requirements for a software system, based on some perspective such

as an end-user perspective or a manager's perspective.

A key strength of viewpoint-oriented analysis is that it recognises the existence of multiple perspectives and

provides a framework for discovering conflicts in the requirements proposed by different stakeholders.

Viewpoints can be used as a way of classifying different types of stakeholder and other sources of

requirements.

There are three generic types of viewpoint:

1. Interactor viewpoints that represent people or other systems that interact directly with the system. In

the bank ATM system, examples of interactor viewpoints are the bank’s customers and the bank’s

account database.

2. Indirect viewpoints that represent stakeholders who do not use the system themselves but who

influence the requirements in some way. In the bank ATM system, examples of indirect viewpoints

are the management of the bank and the bank security staff.

3. Domain viewpoints that represent domain characteristics and constraints that influence the system

requirements. In the bank ATM system, an example of a domain viewpoint would be the standards

that have been developed for inter-bank communications.

(c) Scenario

A scenario is a scene that illustrates some interaction with a proposed system. A scenario is a tool used

during requirements analysis to describe a specific use of a proposed system. Scenarios capture the system,

as viewed from the outside, e.g., by a user, using specific examples.

Some organizations have complex documentation standards for describing a scenario. At the very least, the

description should include:

• A statement of the purpose of the scenario

• The individual user or transaction that is being followed through the scenario

• Assumptions about equipment or software

• The steps of the scenario

(d) Ethnography

 A social scientist spends a considerable time observing and analysing how people actually work.

 People do not have to explain or articulate their work.

 Social and organisational factors of importance may be observed.

 Ethnographic studies have shown that work is usually richer and more complex than suggested by

simple system models.

Scope

 Requirements that are derived from the way that people actually work rather than the way I which

process definitions suggest that they ought to work.

 Requirements that are derived from cooperation and awareness of other people’s activities.

 Awareness of what other people are doing leads to changes in the ways in which we do

things.

 Ethnography is effective for understanding existing processes but cannot identify new features that

should be added to a system.

Focused Ethnography

 Developed in a project studying the air traffic control process

 Combines ethnography with prototyping

 Prototype development results in unanswered questions which focus the ethnographic analysis.

 The problem with ethnography is that it studies existing practices which may have some historical

basis which is no longer relevant

(e). Feasibility study

A feasibility study is a short, focused study that should take place early in the RE process. It should answer

three key questions:

(1) Does the system contribute to the overall objectives of the organization?

(2) Can the system be implemented within schedule and budget using current technology? and

(3) Can the system be integrated with other systems that are used?

If the answer to any of these questions is no, you should probably not go ahead with the project.

