

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - I

Sub: Object Oriented Modeling And Design Code: 18MCA43

Date: 07-04-2021 Duration: 90 mins Max Marks: 50 Sem: IV Branch: MCA

Answer ONE FULL QUESTION from each part

 Marks
OBE

CO RBT

Part - I

 1 What is Generalization and multiple inheritance? Explain different kinds of multiple inheritances in advance

class modeling concept, with example.

Generalization is the process of extracting shared characteristics from two or more

classes, and combining them into a generalized super class. Shared characteristics

can be attributes, associations, or methods.

Multiple inheritance

Permits a class to have more than one superclass and to inherit features from all

parents. Then you can mix information from two or more sources.

Kinds of Multiple Inheritance

The most common form of multiple inheritance is from sets of disjoint classes.

Each subclass inherits from one class in each set.

Multiple classification

An instance of a class is inherently an instance of all ancestors of the class. For

example, an instructor could be both faculty and student. But what about a Harvard

Professor taking classes at MIT? There is no class to describe the combination.

This is an example of multiple classification, in which one instance happens to

participate in two overlapping classes.

10

CO1 L2

(OR)

 2 Explain in detail about following topics with UML notation in advanced class modelling

a.) Enumeration b.)Multiplicity (attributes) c.)Scope d.)visibility

a. Enumeration: An enumeration is a data type that has a finite set
of values. Figure 4.1 illustrates. Figure.pen-Type is an
enumeration that includes solid, dashed, and dotted.

TwoDimensional.fillType is an enumeration that includes solid,

grey, none, horizontal lines, and vertical lines.

In the UML an enumeration is a data type. You can declare an enumeration

by listing the keyword enumeration in guillemets («») above the

enumeration name in the top section of a box. The second section lists the

enumeration values.
(a) The UML representation of an association is a line connecting the two

associated classes. At each end of the line there is optional notation. For
example, we can indicate, using an arrowhead that the pointy end is
visible from the arrow tail. We can indicate ownership by the placement
of a ball, the role the elements of that end play by supplying a name for
the role, and the

(b) multiplicity of instances of that entity (the range of number of objects
that participate in the association from the pe `rspective of the
other end).

 10 CO1 L2

c) Scope: The scope indicates if a feature applies to an object or a class. An

underline distinguishes features with class scope (static) from those with

object scope. Our convention is to list attributes and operations with class

scope at the top of the attribute and operation boxes, respectively.

It is acceptable to use an attribute with class scope to hold the extent

of a class (the set of objects for a class)—this is common with OO

databases. Otherwise, you should avoid

attributes with class scope because they can lead to an inferior model. It is

better to model groups explicitly and assign attributes to them.

Figure 4.4 shows a simple model of phone mail. Each message has an owner

mailbox, date recorded, time recorded, priority, message contents, and a flag

indicating if it has been received. A message may have a mailbox as the

source or it may be from an external call. Each mailbox has a phone number,

password, and recorded greeting. For the PhoneMessage class we can store

the maximum duration for a message and the maximum days a message will

be retained. For

the PhoneMailbox class we can store the maximum number of messages that

can be stored.

In contrast to attributes, it is acceptable to define operations of class scope.

The most common use of class-scoped operations is to create new

instances of a class. Sometimes it is convenient to define class-scoped

operations to provide summary data. You should be careful

with the use of class-scoped operations for distributed applications.

d) Visibility: Visibility refers to the ability of a method to reference a feature

from another class and has the possible values of public, protected, private,

and package. Any method can freely access public features. Only methods

of the containing class and its descendants via inheritance can access

protected features. (Protected features also have package accessibility in

Java.) Only methods of the containing class can access private features.

Methods of classes defined in

the same package as the target class can access package features.

The UML denotes visibility with a prefix. The character “+” precedes

public features. The character “#” precedes protected features. The

character “-” precedes private features. And the character “~” precedes

package features.

Part – II

 3 Describe the stages of Object oriented methodology, used in software development

■ System conception. Software development begins with business
analysts or users conceiving an application and formulating tentative
requirements.
■ Analysis. The analyst must work with the requestor to understand
the problem, because problem statements are rarely complete or
correct. The analysis model is a concise, precise abstraction of what the
desired system must do, not how it will be done. The analysis model
should not contain implementation decisions. For example, a Window
class in a workstation windowing system would be described in terms
of its visible attributes and operations.

The analysis model has two parts: the domain model, a description of

the real-world objects reflected within the system; and the

application model, a description of the parts of the application system

itself that are visible to the user. For example, domain objects

for a stockbroker application might include stock, bond, trade, and

commission. Application objects might control the execution of trades

and present the results. Application

experts who are not programmers can understand and criticize a good model.

▪ System design. The development team devise a high-level
strategy—the system architecture—for solving the application
problem. They also establish policies that will serve as a default for
the subsequent, more detailed portions of design. The system
designer must decide what performance characteristics to
optimize, choose a strategy of attacking the problem, and make
tentative resource allocations. For example, the system designer
might decide that changes to the workstation screen must be fast
and smooth,

even when windows are moved or erased, and choose an

appropriate communications protocol and memory buffering

strategy.

■ Class design. The class designer adds details to the analysis
model in accordance with the system design strategy. The class
designer elaborates both domain and application

objects using the same OO concepts and notation, although they exist on

different conceptual planes. The focus of class design is the data structures

and algorithms needed to

implement each class. For example, the class designer now

determines data structures and algorithms for each of the operations

of the Window class.

■ Implementation. Implementers translate the classes and
relationships developed during class design into a particular
programming language, database, or hardware. Programming should
be straightforward, because all of the hard decisions should have
already

10 CO1 L1

been made. During implementation, it is important to follow good software

engineering practice so that traceability to the design is apparent and so

that the system

remains flexible and extensible. For example, implementers would

code the Window class in a programming language, using calls to

the underlying graphics system on the workstation.

OO concepts apply throughout the system development life cycle, from

analysis through design to implementation.

(OR)

 4 Explain in detail about class modelling with suitable example

10 CO1 L2

PART - III

 5 What is abstract class? Explain the difference between aggregations versus composition with suitable

example and UML representation

Abstract classes are classes that contain one or more abstract methods. An abstract

method is a method that is declared, but contains no implementation. Abstract classes

may not be instantiated, and require subclasses to provide implementations for the

abstract methods

Aggregation is a stronger form of association. An association is a link

connecting two classes. In UML, a link is placed between the “whole” and the

“parts” classes with a diamond head attached to the “whole” class to indicate

that this association is an aggregation

Composition is really a strong form of aggregation. Composition has only one

owner. Composition cannot exist independent of their owner. Composition lives

or dies with their owner. It is represented using a filled diamond head.

The main differentiator between aggregation and composition is the lifecycle

dependence between whole and part. In aggregation, the part may have an

independent lifecycle, it can exist independently. When the whole is destroyed the

part may continue to exist. Composition is a stronger form of aggregation. The

lifecycle of the part is strongly dependent on the lifecycle of the whole.

When the whole is destroyed, the part is destroyed too.

 10 CO1 L3

Aggregation Example A car has many parts. A part can be removed from one

car and installed into a different car. If we consider a salvage business, before a

car is destroyed, they remove all saleable parts. Those parts will continue to exist

after the car is destroyed.
Composition Example For example, a building has rooms. A room can exist
only as part of a building. The room cannot be removed from one building and
attached to a different one. When the building ceases to exist so do all rooms
that are part of it.

(OR)

 6
What do you mean by abstraction? Discuss different types of modeling techniques used for

object oriented modeling and design

In object-oriented programming, abstraction is one of three central principles

(along with encapsulation and inheritance). Through the process of abstraction, a

programmer hides all but the relevant data about an object in order to reduce

complexity and increase efficiency. In the same way that abstraction sometimes

works in art, the object that remains is a representation of the original, with

unwanted detail omitted. The resulting object itself can be referred to as an

abstraction, meaning a named entity made up of selected attributes and behavior

specific to a particular usage of the originating entity. Abstraction is related to

both encapsulation and data hiding.

 10 CO1 L2

The different types of modeling techniques are:

i) Class Model: It describes the structure of objects in a system – their identity,
their relationships to other objects, their attributes and their operations. The
goal of constructing the class model is to capture those concepts from the real
world that are important to an application. Class diagram express the class
model.

ii) State Model: It describes those aspects of objects concerned with time and
the sequencing of operations – events that mark changes, state that define
the context for events, and the organization of events and states. State
diagram expresses the state model.

iii) Interaction Model: It describes interactions between objects – How
individual objects collaborate to achieve the behavior of the system as a
whole. Use case, sequence diagram and activity diagram documents the
interaction model.

Part – IV

 7 Describe in brief about any 5 of the following

a.)Links b.)Association c.)Association class d.)Qualified Association e.) n-ary Association

f.)Multiplicity g.)Bags & sequence

Links: In object modeling links provides a relationship between the objects. These

objects or instance may be same or different in data structure and behavior.

Therefore a link is a physical or conceptual connection between instances (or

objects). For example: Ram works for HCL company. In this example “works for”

is the link between “Ram” and “HCL company”. Links are relationship among the

objects (instance)

Associations: The object modeling describes as a group of links with common

structure and common semantics. All the links among the object are the forms of

association among the same classes. The association is the relationship among

classes.

Association class: is an association that is also a class. Like the links of an

association, the instances of an association class derive identity from

instances of the constituent classes. Like a class, an association class can have

attributes and operations and participate in associations.

 Qualified associations: A qualifier lets you make a more precise traversal.

The syntax is to enclose the qualifier value in brackets. Alternatively,

you can ignore the qualifier and traverse a qualified association as if it

were a simple association.

n-Ary Association : element is used to model complex relationships between

three or more elements, typically in a Class diagram. It is not a commonly-

employed device, but can be used to good effect where there is a dependant

relationship between several elements. It is generally used with the Associate

connector, but the relationships can include other types of connector.

 10 CO1 L2

(a) Bags and Sequence: A bag is a collection of elements with duplicates
allowed. A sequence is an ordered collection of elements with
duplicates allowed. In Figure 3.16 an itinerary is a sequence of
airports and the same airport can be visited more than once. Like
the {ordered} indication,{bag} and {sequence} are permitted only for
binary associations.

Note that the {ordered} and the {sequence} annotations are the same,

except that the first disallows duplicates and the other allows them. A

sequence association is an ordered bag,

while an ordered association is an ordered set.

(OR)

 8 (a) What is a pattern? Describe pattern categories

A Pattern in software architecture describes a particular recurring design problem

that arises in specific design context, and presents a well-proven generic scheme

for its solution. The solution scheme is specified by describing its constituent

components, their responsibilities and relationships, and the way in which they

collaborate Categories

 • Architectural patterns

• Design patterns

• Idioms

An architectural pattern expresses a fundamental structural organization schema

for software systems. It provides a set of predefined subsystems, specifies their

responsibilities, and includes rules and guidelines for organizing the relationships

between them. Architectural patterns are templates for concrete software

architectures. They specify the systemwide structural properties of an application,

and have an impact on the architecture of its subsystems. The selection of an

 06 CO5 L2

architectural pattern is therefore a fundamental design decision when developing

a software system.

E,g The Model-View-Controller pattern

Design pattern provides a scheme for refining the subsystems or components of

a software system, or the relationships between them. It describes a commonly-

recurring structure of communicating components that solves a general design

problem within a particular context. Design patterns are medium-scale patterns.

They are smaller in scale than architectural patterns, but tend to be independent of

a particular programming language or programming paradigm. The application of

a design pattern has no effect on the fundamental structure of a software system,

but may have a strong influence on the architecture of a subsystem. Idioms deal

with the implementation of particular design issues.

 An idiom is a low-level pattern specific to a programming language. An idiom

describes how to implement particular aspects of components or the relationships

between them using the features of the given language. Idioms represent the

lowest-level patterns. They address aspects of both design and implementation.

Most idioms are language-specific—they capture existing programming

experience

 (b) What are design patterns? Describe its categories

A design pattern provides a scheme for refining the subsystems or components of

a software system, or the relationships between them. It describes a commonly-

recurring structure of communicating components that solves a general design

problem within a particular context."

A design pattern is a mid-level abstraction.

Its choice does not affect the fundamental structure of the software system, but it

does affect the structure of a subsystem.

Like the architectural pattern, the design pattern tends to be independent of the

implementation language to be used.

Creational Patterns

These design patterns provide a way to create objects while hiding the creation

logic, 1 rather than instantiating objects directly using new opreator. This gives

program more flexibility in deciding which objects need to be created for a given

use case.

 Structural Patterns

 These design patterns concern class and object composition. Concept of

inheritance is used to compose interfaces and define ways to compose objects to

obtain new functionalities.

 Behavioral Patterns

These design patterns are speci fically concerned with communication between

objects.

 04 CO5 L2

Part – V

 9 Describe pattern template What are the contents of pattern description template?

A Pattern in software architecture describes a particular recurring design

problem that arises in specific design context, and presents a well-proven generic

scheme for its solution. The solution scheme is specified by describing its

 10 CO5 L1

constituent components, their responsibilities and relationships, and the way in

which they collaborate

(OR)

 10 Discuss the concept of architectural pattern with Model View Controller pattern

An architectural pattern expresses a fundamental structural organization schema

for software systems. It provides a set of predefined subsystems, specifies their

responsibilities, and includes rules and guidelines for organizing the relationships

between them. Architectural patterns are templates for concrete software

architectures. They specify the systemwide structural properties of an application,

and have an impact on the architecture of its subsystems. The selection of an

architectural pattern is therefore a fundamental design decision when developing

a software system.

 E,g The Model-View-Controller pattern

Model-View-Controller pattern (MVC)

It divides an interactive application into three components. The model contains the core functionality and

data. Views display information to the user. Controllers handle user input. Views and controllers together

comprise the user interface. A change-propagation mechanism ensures consistency between the user

interface and the model.

EXAMPLE

Consider a simple information system for political elections with proportional

representation.

CONTEXT Interactive applications with a flexible human-computer interface.

PROBLEM User interfaces are especially prone to change requests.

▪ The display and behavior of the application must reflect data

manipulations immediately.

▪ Changes to the user interface should be easy

▪ Porting the user interface should not affect code in the core of the

application

SOLUTION MVC divides an interactive application into the three

areas: processing, output, and input.

STRUCTURE The change-propagation mechanism maintains a registry of the

dependent components within the model.

10 CO5 L2

 An object oriented implementation of MVC would define a separate class

for each component

Scenario 1

Scenario 2

IMPLEMENTATION

1. Separate human-computer interaction from core functionality

2. Implement the change-propagation mechanism.

3. Design and implement the views.

4. Design and implement the controllers.

5. Design and implement the view-controller relationship.

6. Implement the set-up of MVC.

VARIANTS

This variant relaxes the seprataion of view and controller. You can combine the

responsibilities of the view and the controller from MVC in a single component

by sacrificing exchangeability of controllers. This kind of structure is often called

a Document-View architecture.

KNOWN USES: SMALLTALK and MFC

CONSEQUENCES

Benefits:

 Multiple views of the same model.

 Synchronized views.

 ‘Pluggable’ views and controllers.

 Exchangeability of ‘look and feel’.

 Framework potential

Liabilities

▪ Increased complexity.

▪ Potential for excessive number of updates.

▪ Intimate connection between view and controller.

▪ Close coupling of views and controllers to a model.

▪ Inefficiency of data access in view.

▪ Inevitability of change to view and controller when porting.

▪ Difficulty of using MVC with modern user-interface tools.

SEE ALSO

The Presentation-Abstraction –Control pattern.

