USN Third Semester B.E. Degree Examination, July/August 2021 Electronic Circuits Max. Marks: 100 Time: 3

Note: Answer any FIVE full questions

- Which is the suitable position of operating point for the faithful amplification? Justify your 1 a. (04 Marks)
 - Derive the operating point equation for emitter bias configuration. (08 Marks) b.
 - Sketch the gate triggering and V-I characteristics of silicon controlled rectifier (SCR).

(04 Marks)

- Define the thermal runaway process of transistor with typical power derating curve of silicon transistor. (04 Marks)
- List out the difference between JFET and MOSFET. 2 (04 Marks)
 - With neat sketches, explain the working of N-channel D-MOSFET. (06 Marks)
 - Fig. Q2 (c) shows a circuit using E-MOSFET. Given that threshold voltage for MOSFET is 2V and $I_{D(ON)} = 6$ mA for $V_{GS(ON)} = 5$ V. Determine the values of operating point.

(10 Marks)

- Explain the construction and working of photo transistor. Also mention its applications. 3 (06 Marks)
 - Explain the working of Cathode Ray Tube (CRT) with a neat diagram. What are the advantages and disadvantages of CRT?
 - A photodiode has a noise current of 1fA, responsivity figure of 0.5 A/W, active area of 1 mm² and rise time of 3.5 ns. Determine its
 - (i) Noise equivalent power (NEP)
- (ii) Detectivity
- (iii) D*(DEE-STAR)

(iv) Quantum efficiency at 850 nm.

- (07 Marks)
- Derive the expression for current gain (A_i), input impedance (Z_i), voltage gain (A_V) and output admittance (Y_0) for a transistor amplifier using h-parameter model. (12 Marks)

- b. Fig. Q4 (b) shows a darlington amplifier. The two transistors Q1 and Q2 are identical and the h-parameters for the transistors are $h_{ie}=1~\mathrm{K}\Omega,~h_{fe}=100$ and $h_{oe}=40\times10^{-6}$ mho's. The values of voltages $V_{CC} = 15 \text{ V}$, $V_{BE1} = 0.7 \text{ V}$ and $V_{BE2} = 0.7 \text{ V}$. Determine the following:
 - (i) Input impedence
- (ii) Output impedence
- (iii) Voltage gain

(iv) Current gain.

(08 Marks)

What are the advantages of negative feedback?

(05 Marks)

- Derive the expression for voltage gain input resistance and output resistance in a voltage serial feedback topology. (10 Marks)
- Refer to the Fig. Q5 (c) of op-amp based inverting amplifier circuit. Identify the type of negative feedback. Determine the transimpedence gain, input impedence and output impedence parameters of op-amp are 100 M Ω , 10 M Ω and 100 Ω respectively. (05 Marks)

- Fig. Q5 (c)
- What are sinusoidal oscillators? Explain the barkhauses criterion for sustained oscillations.
 - (07 Marks)
 - Explain the operation of 555 times as an Astable multivibrator.

(05 Marks)

Explain the working of RC low pass and RC high pass circuits.

- (08 Marks)
- Define the terms load regulation, line regulation and output resistance for a voltage regulator. (06 Marks)
 - b. Design a power transformer with a multiple output secondary and the following input and output specifications:
 - Primary voltage: 220 V, 50 Hz (i)
 - Secondary voltage: (a) 120-0-12 V at 100 mA and (b) 5 V at 1 A.

Assume B = 60,000 lines per square inch for the choosen core material and an efficiency of (07 Marks)

c. With a neat circuit, explain the operation of buck or step down regulator.

(07 Marks)

Explain the working of an op-amp window comparator.

Current to voltage converters.

(07 Marks)

Explain the working of the following:

CMRIT LIBRARY BANGALORE - 560 037

Voltage to current converters. (ii)

(06 Marks)

c. Explain the working of relaxation oscillator circuit using op-amp.

(07 Marks)