
18CS44: IAT2 solution

Faculty: Dr. Imtiyaz Ahmed & Prof.Preethi A

1. Stack operations in ARM

 The ARM architecture uses the load-store multiple instructions to carry out stack operations.

 The pop operation (removing data from a stack) uses a load multiple instruction; similarly, the

push operation (placing data onto the stack) uses a store multiple instruction.

 When you use a full stack (F), the stack pointer sp points to an address that is the last used or

full location.

 In contrast, if you use an empty stack (E) the sp points to an address that is the first unused or

empty location.

 A stack is either ascending (A) or descending (D). Ascending stacks grow towards higher

memory addresses; in contrast, descending stacks grow towards lower memory addresses.

 Addressing modes for stack operation

 The LDMFD and STMFD instructions provide the pop and push functions, respectively.

 Example1: With full descending

 Figure: STMFD instruction full stack push operation.

Example 2: With empty descending

 Figure: STMED instruction empty stack push operation.

2. syntax of following multiply instructions with clear examples;

i. MLA, ii. SMLAL, iii.UMULL

The multiply instructions multiply the contents of a pair of registers and, depending upon the

instruction, accumulate the results in with another register. The long multiplies accumulate onto a pair

of registers representing a 64-bit value. The final result is placed in a destination register or a pair of

registers.

long multiply instructions (SMLAL, SMULL, UMLAL, and UMULL) produce a 64-bit result. The

result is too large to fit a single 32-bit register so the result is placed in two registers labeled RdLo and

RdHi. RdLo holds the lower 32 bits of the 64-bit result, and RdHi holds the higher 32 bits of the 64-

bit result. Example 3.12 shows an example of a long unsigned multiply instruction

3. syntax of BX instruction. With example pseudocode illustrate offset calculation of forward and

backward jump

The BX instruction causes a branch to the address contained in Rm and exchanges the

instruction set, if required:

 If bit[0] of Rm is 0, the processor changes to, or remains in, ARM state.

 If bit[0] of Rm is 1, the processor changes to, or remains in, Thumb state.

 Change of execution flow forces the program counter pc to point to a new address

 Offset is Calculated as

 label (assigned to address of target instruction)-PC (address of next instruction)=+/-

offset

 + offset=forward jump and – offset backward jump

4. i. 16 bit load /store, ii. Signed 16 bit load /store, iii.Signed 8 bit load /store

And Indexing methods of load /store instructions.

LDR{<cond>} H Rd, addressing2

STR{<cond>} H Rd, addressing2

LDR{<cond>}SH Rd, addressing2

STR{<cond>}H Rd, addressing2

LDR{<cond>}SB Rd, addressing2

STR{<cond>}B Rd, addressing2

 No STRSB or STRSH instructions since STRH stores both a signed and unsigned

halfword;

 Similarly STRB stores signed and unsigned bytes.

5. instructions to operate on Program Status Register

 The ARM instruction set provides two instructions to directly control a program status register

(psr).

 The MRS instruction transfers the contents of either the cpsr or spsr to general purpose register.

 The MSR instruction transfers the contents of a general purpose register to cpsr or spsr.

 Together these instructions are used to read and write the cpsr and spsr.

Syntax: MRS {<cond>} Rd <cpsr |spsr>

 MSR {<cond>} <cpsr|spsr} _<fields>,Rm

 MSR {<cond>} <cpsr|spsr} _<fields>, #immediate

 The table shows the program status register instructions

6. i.SWP, ii. SWI

Swap Ins:

 It is a special case of a load-store instruction.

 It swaps the contents of memory with the contents of a register.

 This instruction is an atomic operation—{it reads and writes a location in the same bus

operation, preventing any other instruction from reading or writing to that location until it

completes}

 Swap instruction cannot be interrupted by any other instruction or any other bus access.

{“holds the bus” until the transaction is complete}

 A software interrupt instruction (SWI) causes a software interrupt exception, which provides a

mechanism for applications to call operating system routines.

Syntax: SWI {<cond>} SWI_number

 When the processor executes an SWI instruction, it sets the program counter pc to the offset 0xB

in the vector table.

 The instruction also forces the processor mode to SVC, which allows an operating system routine

to be called in a privileged mode.

 Each SWI instruction has an associated SWI number, which is used to represent a particular

function call or feature.

 The example below shows an SWI call with SWI number 0x123456, used by ARM toolkits as a

debugging SWI.

 Since SWI instructions are used to call operating system routines, it is required some form of

parameter passing.

 This achieved by using registers. In the above example, register r0 is used to pass parameter 0x12.

The return values are also passed back via register.

7. Embedded System. Differentiate between General Computing and Embedded Computing systems

An embedded system is a combination of 3 types of components: a. Hardware b. Software c.

Mechanical Components and it is supposed to do one specific task only.

Example 1: Washing Machine

 A washing machine from an embedded systems point of view has: a. Hardware: Buttons, Display &

buzzer, electronic circuitry. b. Software: It has a chip on the circuit that holds the software which

drives controls & monitors the various operations possible. c. Mechanical Components: the internals

of a washing machine which actually wash the clothes control the input and output of water, the

chassis itself.

Example 2: Air Conditioner

 An Air Conditioner from an embedded systems point of view has: a. Hardware: Remote, Display &

buzzer, Infrared Sensors, electronic circuitry. b. Software: It has a chip on the circuit that holds the

software which drives controls & monitors the various operations possible. The software monitors

the external temperature through the sensors and then releases the coolant or suppresses it. c.

Mechanical Components: the internals of an air conditioner the motor, the chassis, the outlet, etc An

embedded system is designed to do a specific job only.

8. any 3 purposes of Embedded System in detail

Data Collection/Storage/Representation

Data communication

Data signal processing

Monitoring

Control

Application specific user interface

1. Data Collection/Storage/Representation

 Embedded system designed for the purpose of data collection performs acquisition

of data from the external world.

 Data collection is usually done for storage, analysis, manipulation and

transmission.

 Data can be analog or digital.

 Embedded systems with analog data capturing techniques collect data directly in

the form of analog signal whereas embedded systems with digital data collection

mechanism converts the analog signal to the digital signal using analog to digital converters.

 If the data is digital it can be directly captured by digital embedded system.

 A digital camera is a typical example of an embedded System with data

collection/storage/representation of data.

 Images are captured and the captured image may be stored within the memory of

the camera. The captured image can also be presented to the user through a graphic

LCD unit.

2. Data communication

 Embedded data communication systems are deployed inapplications from complex

satellite communication to simple home networking systems.

 The transmission of data is achieved either by a wire-lin medium or by a wire-less

medium. Data can either be transmitted by analog means or by digital means.

 Wireless modules-Bluetooth, Wi-Fi.

 Wire-line modules-USB, TCP/IP.

 Network hubs, routers, switches are examples of dedicated data transmission

embedded systems.

3. Data signal processing

 Embedded systems with signal processing functionalities are employed in

applications demanding signal processing like speech coding, audio video codec,

transmission applications etc.

 A digital hearing aid is a typical example of an embedded system employing data

processing. Digital hearing aid improves the hearing capacity of hearing impaired

person.

4. Monitoring

 All embedded products coming under the medical domain are with monitoring

functions. Electro cardiogram machine is intended to do the monitoring of the

heartbeat of a patient but it cannot impose control over the heartbeat.

 Other examples with monitoring function are digital CRO, digital multi-meters, and

logic analyzers.

5. Control

 A system with control functionality contains both sensors and actuators Sensors are

connected to the input port for capturing the changes in environmental variable and

the actuators connected to the output port are controlled according to the changes

in the input variable.

 Air conditioner system used to control the room temperature to a specified limit is

a typical example for CONTROL purpose.

6. Application specific user interface

 Buttons, switches, keypad, lights, bells, display units etc are application

specific user interfaces.

 Mobile phone is an example of application specific user interface.

 In mobile phone the user interface is provided through the keypad, system

speaker, vibration alert etc.

