
 

USN           

 
Internal Assessment Test 2 – June 2021 

Sub: Software Testing-Scheme and Answers Sub Code: 
18CS62/17

CS62 
Branch: ISE 

Date: 27/06/2021 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI  A,B&C OBE 

Answer any FIVE FULL Questions MARKS CO RBT 

1a)  Define    equivalence    class    testing.    Write   weak    robust    equivalence 

class test cases for commission problem. 

Definition: [2 Marks] 

Test Cases [4 marks] 
Definition:  

• Important aspect of equivalence classes is that they form a partition of a set, 

where partition refers to a collection of mutually disjoint subsets whose 

union is the entire set.  

• The idea of equivalence class testing is to identify test cases by using  one 

element from each equivalence class. If the equivalence classes are chosen 

wisely, this greatly reduces the potential redundancy among test cases. 

• Test Cases: 

We will have eight weak robust test cases.  

Weak Robust: Single Fault and Min- and Max+ should be considered. 

 
 

[6] CO1,

CO2 

L2 

1b) What are decision tables? Explain each term related to it with example. 

Decision table: Explanation [ 1 mark] 

Example Table [1 mark] 

Terms with explanation  [ 2marks] 

Stub 

Rule Portion 

Entry Portion 

Condition Portion 
• Decision tables are one of the techniques in functional testing that have been 

used to represent and analyze complex logical relationships  

• represents  a number of combinations of actions are taken under varying 

sets of conditions. 

• A decision table has four portions:  

1) the part to the left of the bold vertical line is the stub portion; 

2) to the right is the entry portion. The part above the bold horizontal line is the 

[4] CO2 L2 



condition 

portion,  

3) below is the action portion. Thus, we can refer to the condition stub, the 

condition entries, the action stub, and the action entries.  

4) A column in the entry portion is a rule. Rules indicate which actions, if any, 

are taken for the circumstances indicated in the condition portion of the rule.  

 
 

2a) Define the following terms with respect to fault based testing 

i)Equivalent mutant  ii) Coupling effect 

Each Definition carries 2 marks. 
Equivalent mutant : It is a mutant that cannot be distinguished from original program in 

fault based Testing 

Coupling effect: 

In Fault based Testing, test cases sufficient for detecting the simpler faults are sufficient 

also for detecting the more complex fault. This is known as the coupling effect. 
 

[4] CO2 L2 

2b) What is cyclomatic complexity?  Write the program to find the largest of three 

numbers and draw the program graph. Find the cyclomatic complexity of the same. 

Cyclomatic Complexity[2 marks] 

Program and Graph: [ 2 Marks] 

Computation : [ 2 Marks] 
Cyclomaic  Complexity defines how many independent paths exists in the program 

or program graph. V(G)=e-n+2p   e-Edges n-Nodes and p number of components 

in the graph. 

Program: 

void main() 

{ int a, b, c, max; 

print f ("Enter 3 integers"); 

scanf ("%d%d%d",&a,&b,&c); 

if (a > b) 

if (a > c) 

max = a; 

else  

max = c; 

else if (b > c) 

max = b; 

else max = c; 

printf( "max = %d", max); 

} 

[2+2+2] CO4 L3 



 
 

No. of independent paths   :   

v (a) = e - n + 2 

= 11 - 9 + 2 

= 4 

No. of procedures (p)= 1 
 

3(a) Write notes on mutation analysis. 

4 Basic points 4 marks 
• Mutation analysis is the most common form of software fault-based testing. A 

fault model is used to produce hypothetical faulty programs by creating 

variants of the program under test.  

• Variants are created by "seeding" faults, that is, by making a small change to 

the program under test following a pattern in the fault model 

• The patterns for changing program text are called mutation operators, and 

each variant program is called a mutant. 

• We say a mutant is valid , if it is syntactically correct.  

• We say a mutant is useful , if in addition to being valid, its behavior differs 

from the behavior of the original program for no more than a small subset 

of program test cases.  

• Mutants must be valid, mutation operators are syntactic patterns defined 

relative to particular programming languages 

[4] CO2 L2 

3(b) Define DD path graph. Draw DD path graph for triangle program problem. 

DD path graph: [ 2 marks] 
A DD-path is a sequence of nodes in a program graph such that 

Case 1: It consists of a single node with indeg = 0. 

Case 2: It consists of a single node with outdeg = 0. 

Case 3: It consists of a single node with indeg ≥ 2 or outdeg ≥ 2. 

Case 4: It consists of a single node with indeg = 1 and outdeg = 1. 

Case 5: It is a maximal chain of length ≥ 1. 

 DD path graph for triangle program problem [4 marks] 

[2+4] CO4 L3 



 
4(a) Explain McCabe's basis path testing with Triangle problem. 

Method Description [ 2 marks] 

Program Graph and details about flipping nodes  [2 marks] 

Deriving basis paths [ 2 marks] 

Removal of Feasible paths [2 marks] 

Final Feasible path Computation[ 2 marks] 

[2 marks] 
• The method begins with the selection of a baseline path, which should correspond to 

some “normal case” program execution. This can be somewhat arbitrary;  

• McCabe advises choosing a path with as many decision nodes as possible. Next, the 

baseline path is retraced, and in turn each decision is “flipped”; that is, when a 

node of outdegree ≥ 2 is reached, a different edge must be taken.  

[2 marks] 

•  

•   

[10] CO4 L3 

• We begin a baseline path corresponding path 

with scalene Triangle. 

• Basis Path: Path with highest Decision tables 

• Flip at node with outdegree=2 

• flip at node B 

• flip at node F 

• flip at node H 

• flip at node J 

•  

 

 



[2 marks] 

 

Infeasible paths: [2 marks] 

• if you follow paths p2 and p3, you find that they are both infeasible. 

• Path p2 is infeasible because passing through node D means the sides are not a 

triangle; so the outcome of the decision at node F must be node G.  

• Similarly, in p3, passing through node C means the sides do form a triangle; so node G 

cannot be traversed.  

• Paths p4 and p5 are both feasible and correspond to equilateral and isosceles triangles, 

respectively.  

• Notice that we do not have a basis path for the NotATriangle case. 

• McCabe’s procedure successfully identifies basis paths that are topologically 

independent; 

• however, when these contradict semantic dependencies, topologically possible paths 

are seen to be logically infeasible. 

• One solution to this problem is to always require that flipping a decision results in 

a semantically feasible path. Another is to reason about logical dependencies 

1. If node C is traversed, then we must traverse node H. 

2. If node D is traversed, then we must traverse node G. 

Final Paths: [2 marks] 

• Taken together, these rules, in conjunction with McCabe’s baseline method, will yield 

the following feasible basis path set. Notice that logical dependencies reduce the size 

of a basis set when basis paths must be feasible. 

 
 

5 Consider the following C function which encodes the string in following manner. 

If the string character is + or - or *, it is replaced with space ' ' , if it is uppercase 

character, it is replaced with lowercase. Other alphanumeric characters are simply 

copied in destination string.  Draw the control flow graph for the program. Find 

out the statement coverage and node coverage % from control flow graph for the 

following test suite T0={"test","test**ing", "test+-"} 
1. const char* encode(char *str) { 

2. int i = 0; 

3. char *str1=str; 

4. char en_str[25]; 

5. while (str1[i] != '\0') { 

6. if(str1[i]=='*'|| str1[i]=='+'||str1[i] =='-') 

[5+5] CO4 L3 



7.       en_str[i] =' ';   

8. else if(str1[i]>=65 && str1[i]<=90) 

9.      en_str[i]=str1[i]+32; 

10. else 

11. en_str[i]=str1[i]; 

12. i++; 

13. } 

14. en_str[i]='\0'; 

15. return (en_str); 

16. } 

Control Flow Graph: [5 marks] 

Statement coverage Computation [2.5 marks] 

Node Coverage Computation [2.5 marks] 

 
 

6 Consider the following program. Find the DU paths for the variables staffDiscount, 

totalPrice, finalPrice, discount and price. Verify that whether these DU paths are 

definition clear. 

[10] CO4 L3 



 

20 DU paths * 0.5 marks = 10 marks 
A definition/use path with respect to a variable v (denoted du-path) is a path in 

PATHS(P) such that, for some v ∈ V, there are define and usage nodes DEF(v, m) 

and USE(v, n) such that m and n are the initial and final nodes of the path 
DU Path for staffDiscount 

P1(3, 12) = <3,4,5,6,7,8,9,10,11,12>  - is definition clear 

P2(3, 14) = <3, 4,5,6,7,8,9,10,11,12,13,14> is NOT definition clear 

DU Path for totalPrice 

P3(4, 7) = <4,5,6,7 >  - definition clear 

P4(4, 10) = <4,5,6,7,8,9,10>  NOT definition clear 

P5(7, 6)     = <7,8,9,6> definition clear 

P6(7,7)       = <7,8,9,6,7> NOT definition clear 

P8 (7, 10)     = <7,8,9,6,10> definition clear 

P9(7, 11)     = <7,8,9,6,10,11> definition clear 

P10(7, 12)     = <7,8,9,6,10,11,12> definition clear 

P11(7, 14)     = <7,8,9,6,10,11,12,13,14> definition clear 

DU Path for finalPrice 

P12(17,17) = <17,17> - definition clear 

DU Path for discount 

P13(12,16)=<12,13,14,15,16> > NOT definition clear 

P14(12,17)=<12,13,14,15,16,17>  NOT definition clear 

P15(12,16)=<12,13,14,15,16> > NOT definition clear 

P16(14,16)=<14,15,16> > definition clear 

P17(14,17)=<14,15,16,17> > definition clear 

DU Path for price 

P18(5,6) =<5,6> definition clear 

P19(5,7)=<5,6,7> definition clear 

P20(8,6)=<8,9,6> definition clear 

P20(8,7)=<8,9,6,7> definition clear 
 

 

                   


