USN					

Internal Assessment Test 2 – June 2021

	1		Int	ernal Ass	sessment Test	2 – June 20		1			
Sub:	Software Testin	g-Scheme	and Answ	vers		Sub Code:	18CS62/17 CS62	Branc	h: ISE		
Date:	27/06/2021	Duration			ax Marks: 50	Sem/Sec:	VI A,B&C		•	OB	
Date:	Define equiclass test case Definition: Test Cases Definition: Important where par union is the The idea of element from wisely, this Test Case	ivalence is for con [2 Mar aspect of equivalence entire of equivalence each signature es:	class mmission rks] f equiva efers to eset. alence cla n equiva reduces	testing. n problem lence cla a collect lass testin lence cla the poten	Write weak Write weak sses is that the tion of mutua ng is to identi ss. If the equ itial redundance	ey form a ally disjoin fy test cas ivalence cl	equivalence partition of a nt subsets w es by using lasses are ch	a set, hose one	MARKS [6]		RBT L2
	We will hav Weak Robu	_			- and Max+ s	hould be c					
	WR1	10	10	10	\$100						
	WR2	-1	40	45	Program termin	nates					
	WR3	-2	40	45	Value of locks	not in the rar	nge 1 70				
	WR4	71	40	45	Value of locks	not in the rar	nge 1 70				
	WR5	35	-1	45	Value of stocks	not in the ra	inge 1 80				
	WR6	35	81	45	Value of stocks	not in the ra	inge 1 80				
	WR7	35	40	-1	Value of barrel	s not in the r	ange 1 90				
	WR8	35	40	91	Value of barrel	s not in the r	ange 1 90				
1b)	used to rep	ole: Explained a number of the control of the contr	planati mark] nation	on [1 n [2mark the techrice comple	nark]	tional testin	ng that have		[4]	CO2	L2

4) A colu	entries, th mn in the for the ci	e action s e entry po ircumstar	tion. Thus, value, and the a rule retion is a rule recession Table	action ent le. Rules	ries. indicate	which actio	ons, if any,		
Stub	Rule 1	Rule 2	Rules 3, 4	Rule 5	Rule 6	Rules 7, 8]		
c1	Т	Т	Т	F	F	F	-		
c2	Т	Т	F	Т	Т	F	-		
с3	Т	F	_	Т	F	_			
a1	Х	Х		X			1		
a2	X				X		-		
a3		X		X			-		
a4			X			X			
							J		
fault based Coupling In Fault b	l Testing effect: pased Testi	It is a mut	2 marks. cant that cannot ses sufficient folex fault. This	or detection	ng the sim	pler faults are	e sufficient		
fault based Coupling In Fault based for de What is conumbers a Cycloma Program Comput Cyclomai	d Testing effect: pased Testing tecting the yelomatic and draw tentic Comple ation: [2]	ng, test cas more complexit he program plexity[2 aph: [2 Marks]	ant that cannot sees sufficient folex fault. This sy? Write the m graph. Find marks] Marks]	or detections is known to program d the cycle	ng the sime as the control to find the lomatic control dent path	pler faults are upling effect. he largest of omplexity of sexists in the	E three f the same.	CO4	L3

3 B		
No. of independent paths :		
v(a) = e - n + 2		
= 11 - 9 + 2		
No. of procedures (p)= 1		
3(a) Write notes on mutation analysis. [4]	CO2	L2
4 Basic points 4 marks		
 Mutation analysis is the most common form of software fault-based testing. A fault model is used to produce hypothetical faulty programs by creating variants of the program under test. Variants are created by "seeding" faults, that is, by making a small change to the program under test following a pattern in the fault model 		
• The patterns for changing program text are called mutation operators , and each variant program is called a mutant.		
We say a mutant is valid, if it is syntactically correct.		
• We say a mutant is useful, if in addition to being valid, its behavior differs		
from the behavior of the original program for no more than a small subset		
of program test cases.		
Mutants must be valid, mutation operators are syntactic patterns defined relative to particular programming languages		
3(b) Define DD path graph. Draw DD path graph for triangle program problem. [2+4] DD path graph: [2 marks]	CO4	L3
A DD-path is a sequence of nodes in a program graph such that Case 1: It consists of a single node with indeg = 0.		
Case 2: It consists of a single node with outdeg $= 0$.		
Case 3: It consists of a single node with indeg ≥ 2 or outdeg ≥ 2 .		
Case 4: It consists of a single node with indeg = 1 and outdeg = 1. Case 5: It is a maximal chain of length ≥ 1 .		
DD path graph for triangle program problem [4 marks]		

F" 00	DD P-41 C	-			l
Figure 8.2 Nodes	DD-Path Case of definition				
4	First 1	(A)			
5-8 9	A 5 B 3	B			
10 11	C 4 D 4	(C) (D)			
12 13	E 3 F 3	E			
14 15	H 3	T. C.			
16 17	J 3 K 4				
18	L 4	G			
19 20	M 3 N 3				
21 22	G 4 O 3	(K) (L)			
23	Last 2	M			
		↓ (N)			
		igoplus			
		Last			
8.5 DD-path gra	ph for triangle progra	n.			
		testing with Triangle problem.	[10]	CO4	L3
	scription [2 1				
		ails about flipping nodes [2 marks]			
_	isis paths [2 i				
	Feasible pat				
	ble path Com	putation[2 marks]			
[2 marks]					
	-	ne selection of a baseline path, which should correspon	nd to		
		m execution. This can be somewhat arbitrary;			
	_	a path with as many decision nodes as possible. Next			
_		and in turn each decision is "flipped"; that is, wh	en a		
	utaegree ≥ 2 is i	eached, a different edge must be taken.			
[2 marks]					
_	•	We begin a baseline path corresponding path			
(F	irst	with scalene Triangle.			
	¥ •	Basis Path: Path with highest Decision tables			
		Flip at node with outdegree=2			
	B	flip at node B			
_	\sim	The at house b			
		flip at node F			
Q (• D	flip at node F			
	D •	flip at node H			
	D E	-			
	E F	flip at node H			
	D E H	flip at node H			
	E H	flip at node H			
	D E H	flip at node H			
		flip at node H			
	E D H	flip at node H			
		flip at node H			
		flip at node H			
		flip at node H			
		flip at node H			
		flip at node H			

[2 marks]

Table 8.6 Basis Paths in Figure 8.5

Original	p1: A-B-C-E-F-H-J-K-M-N-O-Last	Scalene
Flip p1 at B	p2: A-B-D-E-F-H-J-K-M-N-O-Last	Infeasible
Flip p1 at F	p3: A-B-C-E-F-G-O-Last	Infeasible
Flip p1 at H	p4: A-B-C-E-F-H-I-N-O-Last	Equilateral
Flip p1 at J	p5: A–B–C–E–F–H–J–L–M–N–O–Last	Isosceles

<u>Infeasible paths:</u> [2 marks]

- if you follow paths p2 and p3, you find that they are both infeasible.
- Path p2 is infeasible because passing through node D means the sides are not a triangle; so the outcome of the decision at node F must be node G.
- Similarly, in p3, passing through node C means the sides do form a triangle; so node G cannot be traversed.
- Paths p4 and p5 are both feasible and correspond to equilateral and isosceles triangles, respectively.
- Notice that we do not have a basis path for the NotATriangle case.
- McCabe's procedure successfully identifies basis paths that are topologically independent;
- however, when these contradict semantic dependencies, topologically possible paths are seen to be logically infeasible.
- One solution to this problem is to always require that flipping a decision results in a semantically feasible path. Another is to reason about logical dependencies
 - 1. If node C is traversed, then we must traverse node H.
 - 2. If node D is traversed, then we must traverse node G.

Final Paths: [2 marks]

Taken together, these rules, in conjunction with McCabe's baseline method, will yield
the following feasible basis path set. Notice that logical dependencies reduce the size
of a basis set when basis paths must be feasible.

p1: A–B–C–E–F–H–J–K–M–N–O–Last	Scalene
p6: A-B-D-E-F-G-O-Last	Not a triangle
p4: A-B-C-E-F-H-I-N-O-Last	Equilateral
p5: A–B–C–E–F–H–J–L–M–N–O–Last	Isosceles

5	Consider the following C function which encodes the string in following manner.
	If the string character is + or - or *, it is replaced with space '', if it is uppercase
	character, it is replaced with lowercase. Other alphanumeric characters are simply
	copied in destination string. Draw the control flow graph for the program. Find
	out the statement coverage and node coverage % from control flow graph for the
	following test suite T ₀ ={"test","test**ing", "test+-"}

- const char* encode(char *str) {
- 2. int i = 0;
- char *str1=str;
- char en_str[25];
- 5. while (str1[i] != '\0') {
- 6. if(str1[i]=='*'|| str1[i]=='+'||str1[i] =='-')

[5+5]

CO4 L3

```
en_str[i] =' ';
    8. else if(str1[i]>=65 && str1[i]<=90)
    9.
           en_str[i]=str1[i]+32;
    10. else
    11. en_str[i]=str1[i];
    12. i++;
    13. }
    14. en_str[i]='\0';
    15. return (en_str);
    16. }
Control Flow Graph: [5 marks]
Statement coverage Computation [2.5 marks]
Node Coverage Computation [2.5 marks]
                         Control flow graph
                         (Const char * encodo (char * str)
                                       char en strest;
           given Test Suite = 5"test", "test ming", "test + "3.

Test suite does not cover special symbols, upper case letters. " It will not Visit @ node 91.6%.

" stalement coverage = 11/12 = 0.000.
Consider the following program. Find the DU paths for the variables staffDiscount,
                                                                                                  [10]
                                                                                                           CO4
                                                                                                                  L3
totalPrice, finalPrice, discount and price. Verify that whether these DU paths are
definition clear.
```

```
program Example()
var staffDiscount, totalPrice, finalPrice, discount, price
3 staffDiscount = 0.1
4 totalPrice = 0
s input(price)
6 while(price != -1) do
      totalPrice = totalPrice + price
      input(price)
 od
print("Total price: " + totalPrice)
if (totalPrice > 15.00) then
      discount = (staffDiscount * totalPrice) + 0.50
13 else
      discount = staffDiscount * totalPrice
15 fi
print("Discount: " + discount)
17 finalPrice = totalPrice - discount
```

20 DU paths * 0.5 marks = 10 marks

A definition/use path with respect to a variable v (denoted du-path) is a path in PATHS(P) such that, for some $v \in V$, there are define and usage nodes DEF(v, m) and USE(v, v) such that v0 and v1 are the initial and final nodes of the path

DU Path for staffDiscount

 $P1(3, 12) = \langle 3,4,5,6,7,8,9,10,11,12 \rangle$ - is definition clear

 $P2(3, 14) = \langle 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 \rangle$ is **NOT** definition clear

DU Path for totalPrice

P3(4,7) = <4.5.6.7 > - definition clear

 $P4(4, 10) = \langle 4,5,6,7,8,9,10 \rangle$ **NOT** definition clear

P5(7, 6) = <7.8,9.6> definition clear

P6(7,7) = <7,8,9,6,7 > NOT definition clear

P8 (7, 10) = <7.8,9.6,10 > definition clear

 $P9(7, 11) = \langle 7, 8, 9, 6, 10, 11 \rangle$ definition clear

 $P10(7, 12) = \langle 7, 8, 9, 6, 10, 11, 12 \rangle$ definition clear

 $P11(7, 14) = \langle 7, 8, 9, 6, 10, 11, 12, 13, 14 \rangle$ definition clear

DU Path for finalPrice

P12(17,17) = <17,17> - definition clear

DU Path for discount

P13(12,16)=<12,13,14,15,16> > **NOT** definition clear

P14(12,17)=<12,13,14,15,16,17> **NOT** definition clear

P15(12,16)=<12,13,14,15,16> > **NOT** definition clear

P16(14,16) = <14,15,16> > definition clear

P17(14,17) = <14,15,16,17 >_definition clear

DU Path for price

P18(5,6) = <5,6 > definition clear

P19(5,7) = <5,6,7 > definition clear

P20(8,6) = <8,9,6> definition clear

P20(8,7) = <8,9,6,7> definition clear