
 

 

Solutions 

Internal Assessment Test 2 – June 2021 
 

Sub: Advanced Java & J2EE Code: 18CS644 

 

Date: 
 

23.06.2021 

 

Duration: 
 

60mins 
Max 

Marks: 
 

50 
Sem: VI Branch: CSE 

Note: Answer Any 3 Questions from Part A and  2 questions from Part B 

 

  Question Max 

Marks 

1 a Write short notes on the Set interface and the HashSet class. 

Interface Set<E> 

The Set interface extends collection. It implements the behaviour of Set, i.e. to not allow duplicate 

elements. The behavior of the add() method is as follows :  

boolean add(E e) 

Adds the specified element to this set if it is not already present  

If this set already contains the element, the call leaves the set unchanged and returns false. 

 

class HashSet<E> 

HashSet class extends AbstractSet and implements the Set interface. It creates a collection that 

uses HashTable for storage. 

Hash table stores information by using a mechanism called hashing. A key is used to determine a 

unique value, called its hash code.  Hash code is then used as the index at which the data 

associated with the key is stored. The transformation of the key into its hash code is performed 

automatically. The code can’t directly index the hash table.  

Advantage of hashing: allows the execution time of add( ) contains( ), remove( ), and size( ) to 
remain constant even for large sets. 

HashSet can be created using the following constructors. In order to improve the performance, 

HashSet can be constructed with a fill ratio.The fill ratio is between 0.0 and 1.0. It determines how 

full the hash set can be before it is resized upward. When the number of elements is greater than 

the capacity of the hash set multiplied by its fill ratio, the hash set is expanded. For constructors 

that do not take a fill ratio, 0.75 is used. 

 

HashSet( ) :constructs a default hash set 

 

HashSet(Collection<? extends E> c): initializes the hash set by using the elements of c 

 
HashSet(int capacity) initializes the capacity of the hash set to capacity, default: 16 

 

HashSet(int capacity, float fillRatio) : initializes both the capacity  

 

8 

 b Demonstrate HashSet with a suitable example. 
import java.util.*; 
class HashSetDemo { 

public static void main(String args[]) { 
// Create a hash set. 
HashSet<String> hs = new HashSet<String>(); 
// Add elements to the hash set. 
hs.add("Beta"); hs.add("Alpha"); 

hs.add("Eta"); hs.add("Gamma"); 
hs.add("Epsilon"); hs.add("Omega"); 
System.out.println(hs); 

       //contains 

4 

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Set.html


        System.out.println("hs contains ‘Alpha'?"+hs.contains(“Alpha")); 
        //removed items 

        h.remove(“Gamma"); System.out.println(h);   
} 

} 
Output: 

[Gamma, Eta, Alpha, Epsilon, Omega, Beta] 
Hs contains ’Alpha’? True 

[Eta, Alpha, Epsilon, Omega, Beta] 

 

2  What are legacy classes? Explain in detail the 4 legacy classes with code. 

In J2SE1.2 several of the original classes were reengineered to support the collection interfaces.  

None of the modern collection classes are synchronized. All legacy classes are synchronized  
There are 5 Legacy classes :  

Vector: a dynamic array and is similar to ArrayList. It is reengineered to extend AbstractList and 

to implement the List interface. 

Stack  : subclass of Vector and implements LIFO order 

Dictionary: An abstract class that represents a key/value storage repository and operates like Map.  

It is fully superseded by Map 

HashTable: a concrete implementation of a Dictionary. It stores key/value pairs in a hash table.  

Neither keys nor values can be null.  You can specify an object that is used as a key, the value that 

you want linked to that key. The key is then hashed, and the resulting hash code is used as the 

index 

Properties: subclass of Hashtable. It is used to maintain lists of values in which the key is a String 
and the value is also a String.  It can be easily stored to or loaded from disk with the store( ) and 

load( ) methods. 

 

Vector 

A vector can be constructed by any of the following constructors.  

Vector( ) : initial size of 10. 

Vector(int size) : 

Vector(int size, int incr) 

incr specifies the number of elements to allocate each time that a vector is resized upward 

By default it is doubled. 

Vector(Collection<? extends E> c)  

A vector has protected data members  
int capacityIncrement; // stores the increment value 

int elementCount; // number of elements currently in the vector 

Object[ ] elementData; //array that holds the vector 

 

The legacy methods of a vector are as follows. 
void addElement(E el ) – add element 

E elementAt(int idx) – add at an index position 

E firstElement( ) 

E lastElement() 
int indexOf(Object o ) and int lastIndexOf( Object o). 

boolean removeElement(Object o) or void removeElementAt(int idx ). 
 

 

// Demonstrate various Vector operations. 

import java.util.*; 

class VectorDemo { 

public static void main(String args[]) { 

// initial size is 3, increment is 2 
Vector<Integer> v = new Vector<Integer>(3, 2); 

System.out.println("Initial size: " + v.size()); 

System.out.println("Initial capacity: " + 

v.capacity()); 

v.addElement(1); v.addElement(2); 
v.addElement(3); v.addElement(4); 

System.out.println("Capacity after four additions: " + v.capacity()); 

12 



System.out.println("First element: " + v.firstElement()); 

System.out.println("Last element: " + v.lastElement()); 

if(v.contains(3)) 

System.out.println("Vector contains 3.");  

// Enumerate the elements in the vector. 

Enumeration<Integer> vEnum = v.elements(); 

System.out.println("\nElements in vector:"); 

while(vEnum.hasMoreElements()) 

System.out.print(vEnum.nextElement() + " "); 

 

// recommended to use for loop 

// System.out.println("\nElements in vector:"); 
//for(int i : v) 

   //System.out.print(i + " "); 

System.out.println(); 

} 

} 

Output: 
Initial size: 0 

Initial capacity: 3 

Capacity after four additions: 5 

First element: 1 

Last element: 12 
Vector contains 3. 

Elements in vector: 

1 2 3 4 

 

Stack 

E push(E element) 
E pop( ).  

E peek( ).  
EmptyStackException is thrown if you call pop( ) or peek( ) when the invoking stack is empty.  

boolean empty( ) :returns true if nothing is on the stack.  

search( ) :determines whether an object exists on the stack. Returns the number of pops that are 

required to bring it to the top of the stack 
          public class stackDemo { 

public static void main(String args[])) { 

        Stack<Integer> st = new Stack<Integer>(); 

        System.out.println("stack: " + st); 

        st.push(42); st.push(66); st.push(99); 

         System.out.println("After pushing 3 items: " + st); 

        st.pop();st.pop(); 

     System.out.println("After popping two items: " + st); 

            } 

} 

run: 
stack: [] 

After pushing 3 items: [42, 66, 99] 

After popping two items: [42] 

 

HashTable 

V put( K key, V value)  

V get( Object key)  
keys( ) and elements( ) :  

The keys and values can each be returned as an  

Enumeration elements() 

Enumeration<K> keys( ) 
size( ) : returns the number of key/value pairs stored in a dictionary 
isEmpty( ) returns true when the dictionary is empty.  

remove( Object key) method to delete a key/value pair. 

Constructors: 



Hashtable( ) : default size is 11 

Hashtable(int size) 

Hashtable(int size, float fillRatio): fillRatio determines how full the hash table can be before it is resized 

upward.  0.75 is used by default 

Hashtable(Map<? extends K, ? extends V> m) : hash table that is initialized with the elements in m 

 - A hash table can only store objects that override the hashCode( ) and equals( ) 

 - If key is String, it already has these. 

 - does not directly support iterators. 

 

import java.util.Enumeration; 

import java.util.Hashtable; 

 
public class hashTableDemo { 

     

    hashTableDemo() { 

        Hashtable<String, Double> balance =  

new Hashtable<String, Double>(); 

        Enumeration<String> names; 

        String str; 

        double bal; 

        balance.put("John Doe", 3434.34);         balance.put("Tom Smith", 123.22); 

        balance.put("Jane Baker", 1378.00);         balance.put("Tod Hall", 99.22); 

        balance.put("Ralph Smith", -19.08); 
        // Show all balances in hashtable. 

        names = balance.keys(); 

        while(names.hasMoreElements()) { 

            str = names.nextElement(); 

            System.out.println(str + ": " + 

            balance.get(str)); 

        }  

      System.out.println(); 

        // Deposit 1,000 into John Doe's account. 

        bal = balance.get("John Doe"); 

        balance.put("John Doe", bal+1000); 

        System.out.println("John Doe's new balance: " + 
        balance.get("John Doe")); 

 

        } 

} 

Output: 
Output: 

Tod Hall: 99.22 

Ralph Smith: -19.08 

John Doe: 3434.34 

Jane Baker: 1378.0 

Tom Smith: 123.22 
 

John Doe's new balance: 4434.34 

 

Properties 

Properties( ) - has no default values 

Properties(Properties propDefault) 
Important Use :  

specify a default property that will be returned if no value is associated with a certain key 

Both cases above : the property list is empty 

deprecated method: save( ). 

This was replaced by store( )  

because save( ) did not handle errors correctly. 
getProperty( ) : a default value can be specified along with the key. 

getProperty( "name" ,"default value") 
If the "name" value is not found, then "default value" is returned 



 

import java.util.Properties; 

import java.util.Set; 

public class PropertiesDemo { 

    PropertiesDemo() { 

        Properties capitals = new Properties(); 

        capitals.put("Illinois", "Springfield"); 

        capitals.put("Missouri", "Jefferson City"); capitals.put("Washington", "Olympia"); 

        capitals.put("California", "Sacramento");capitals.put("Indiana", "Indianapolis"); 

        // Get a set-view of the keys. 

        Set<?> states = capitals.keySet(); 

        // Show all of the states and capitals. 
        for(Object name : states) 

        System.out.println("The capital of " +   name + " is " +  capitals.getProperty((String)name)   + "."); 

        System.out.println(); 

        // Look for state not in list -- specify default. 

        String str = capitals.getProperty("Florida", "Not Found"); 

        System.out.println("The capital of Florida is " + str + "."); 

    } 

} 

Output: 
The capital of Missouri is Jefferson City. 

The capital of Illinois is Springfield. 
The capital of Indiana is Indianapolis. 

The capital of California is Sacramento. 

The capital of Washington is Olympia. 

 

The capital of Florida is Not Found. 

 

3 a Differentiate equals and == when used on strings with a suitable example. 

 

equals( ) method compares the characters inside a String object. 

boolean equals(Object str) 
str is the String object being compared with the invoking String object 

true if the strings contain the same characters in the same order 

false otherwise 

 

== operator compares two object references to see whether they refer to the same instance 

The contents of the two String objects are identical, but they are distinct objects 

This means that s1 and s2 do not refer to the same objects and are, therefore, not == 

 

System.out.println("\n** equals() vs == **"); 

String str1 = "Java"; 

String str2 = new String(str1); 
         

System.out.println(str1+" equals "+str2+ "->"+str1.equals(str2)); 

System.out.println(str1+" == "+str2+ "->"+str1==str2); 

Output: 

** equals() vs == ** 

Java equals Java->true 

false 

 

6 

 b Explain the following string methods : regionMatches(), split(), trim() 

 

regionMatches() 

boolean regionMatches(int startIndex, String str2,  

int str2StartIndex, int numChars) 

compares a specific region inside a string with another specific region in another string. The startIndex 

starting index of invoking String object. 

6 



str2 – string being compared 

str2StartIndex – starting index for comparison of str2. 

numChars  - length of the substring being compared. 

Overloaded version 

boolean regionMatches(boolean ignoreCase, int startIndex, String str2, int str2StartIndex, int 

numChars) 

if ignoreCase is true, the case of the characters is ignored 

 

System.out.println("\n** Region Matches **"); 

   s1 = "Java Programming"; 

   s2 = "programming"; 

System.out.println(s1 + " equals " + s2 + " for region 5 to 10 -> " + s1.regionMatches(true, 5, s2,0,3)); 
 //Specialized form  of region Matches 

System.out.println("\n** Specialized form  of region Matches == **"); 

System.out.println("String 'Arrival' starts with 'Ar'->"+ "Arrival".startsWith("Ar")); 

System.out.println("String 'ended' ends with 'ed'->"+ "ended".endsWith("ed")); 

  

Output: 

** Region Matches ** 

Java Programming equals programming for region 5 to 10 -> true 

** Specialized form  of region Matches == ** 

String 'Arrival' starts with 'Ar'->true 

String 'ended' ends with 'ed'->true 
String 'Arrival' has 'rival' starting at index 2->true 

 

split() 

String[ ] split(String regExp)  

Decomposes the invoking string into parts and returns an array that contains the result.  

Each part is delimited by the regular expression passed in regExp. 

String[ ] split(String regExp, int max)  

 

Decomposes the invoking string into parts and returns an array that contains the result.  
Each part is delimited by the regular expression passed in regExp.  

 

The number of pieces is specified by max.  

If max is negative, then the invoking string is fully decomposed.  

Otherwise, if max contains a nonzero value, the last entry in the returned array contains the remainder 

of the invoking string.  

If max is zero, the invoking string is fully decomposed, but no trailing empty strings will be included. 

 

String s = "Programming in Java during Java class"; 

System.out.println(Arrays.toString(s.split("J\\w*",1))); 
System.out.println(Arrays.toString(s.split("J\\w*",2))); 

System.out.println(Arrays.toString(s.split("J\\w*",3))); 

 

String st = "A,B,C,E,"; 

System.out.println(Arrays.toString(st.split(",",0))); 

System.out.println(Arrays.toString(st.split(",",-1))); 

 

Output: 

               [Programming in Java during Java class] 

[Programming in ,  during Java class] 

[Programming in ,  during ,  class] 
[A, B, C, E] 

            [A, B, C, E, ] 

 

String trim( ) 

returns a copy of the invoking string from which any leading and trailing whitespace has been removed. 

import java.util.*; 



public class Main{ 

 public static void main(String[] args) { 

 HashMap<String, Integer> marks = new HashMap<String, Integer>();   

 marks.put("1CR14CS001", 85);marks.put("1CR14CS003", 86);         

 marks.put("1CR14CS045",75); marks.put("1CR14CS085",40);          

 marks.put("1CR14CS096", 87);        

 

  Scanner in = new Scanner(System.in);          

 System.out.print("Enter USN: ");         

 String s = in.next();                

 s= s.trim();         

 System.out.println(marks.get(s));  
 } 

} 

Output: 

Enter USN:  1CR14CS001 

85 

Enter USN:1CR14CS003      (enter) 

86 

Enter USN:     1CR14CS085  (enter) 

40 

 

4 a Explain the construction of String with all possible constructors. Use code snippets. 

 

String s = new String(); 

will create an instance of String with no characters in it 

String(char chars[ ]) 

Creates a String initialized by an array of characters 

char chars[] = { 'a', 'b', 'c' }; 

String s = new String(chars); 

String(String strObj) 
construct a String object that contains the same character sequence as another String object.  

String s1 = new String(c); 

String s2 = new String(s1); 

s1 and s2 contain the same string 

 

String(char chars[ ], int startIndex, int numChars) 

specify a subrange of a character array as an initializer 

startIndex specifies the index at which the subrange begins 

numChars specifies the number of characters to use 

 

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' }; 

String s = new String(chars, 2, 3); //cde 

String(StringBuffer strBufObj) 

 construct a String from a StringBuffer  

String(StringBuilder strBuilderObj) 

 construct a String from a StringBuilder 

String(int codePoints[ ], int startIndex, int numChars) 

 extended Unicode character set 

 codePoints is an array that contains Unicode code points 

 

There are also constructors that let you specify Charset 

String(byte chrs[ ]) 

     - chrs specifies the array of bytes 

String(byte chrs[ ], int startIndex, int numChars) 

    - specify a subrange In each of these constructors 

    - byte-to-character conversion is done by using the default character encoding 
byte a[]={65,66,67,68,69,70}; 

String s = new String(a); 

6 



System.out.println(s): 

 

String s = new String(a,1,3); 

System.out.println(s): 

ABCDEF 

BCD 

 

 b Compare and contrast Strings, StringBuffer and StringBuilder. 

String StringBuffer StringBuilder 

String is immutable StringBuffer is mutable StringBuilder is mutable 

Cannot increase or decrease 

in size  

Can grow or decrease in size, 

allows for preallocation to 

decrease time taken for 

allocating extra characters as 

the buffer grows. 

Can grow or decrease in size, 

allows for preallocation to 

decrease time taken for 

allocating extra characters as 

the buffer grows 

Can be created by directly 

assigning a primitive String. 

String s = “Hello” 

One of the constructors need to 

be called to create a 

StringBuffer. 

One of the constructors need to 

be called to create a 

StringBuffer. 

+ operator can be used to 

concatenate strings together 

and also strings with other 

primitive types or objects.   

+ operator cannot be used to 

append or perform operations 

on StringBuffer with other data 

types 

+ operator cannot be used to 

append or perform operations 

on StringBuilder with other 

data types 

String is thread safe StringBuffer is thread safe. It is 

synchronized.  
StringBuilder is not thread 

safe. It is not synchronized 

Efficient when working on 

individual string. But when 

operations such as append is 

performed, it becomes slow 

because each time, new String 

object is created. 

Efficient when working on 

operations that modify the 

string because new String 

does not need to be created 

everytime. 

Performance wise faster than 

StringBuffer because 

StringBuilder is not 

synchronized. It is more 

efficient to use if 

synchronization is not 

required. 

 

Program to demonstrate behavior of String and StringBuffer. 

        //To append World to String 

        s = s+"World"; // A new string has to be created. 

        System.out.println("After concatenating and creating new object:"+s); 

        //append World to StringBuffer 

        sb.append("World"); 

        System.out.println("After appending to existing object of StringBuffer:"+sb); 

 } 

Output: 

After concatenating and creating new object: HelloWorld 

After appending to existing object of StringBuffer: HelloWorld 

 

 

6 

 

5 

 

a 
Explain with code snippet the following methods of StringBuffer : ensureCapacity(), insert(), 

trimToSize().  Give complete      syntax of each method and all overloaded versions. 

 

ensureCapacity() 

void ensureCapacity(int minCapacity)  

to preallocate room for a certain number of characters after a StringBuffer has been 

 

8 



constructed. 

Use this to increase the size if you know the buffer is going to increase in size. 

 

StringBuffer sb = new StringBuffer(); 

System.out.println(sb.capacity()); 

 

Sb.ensureCapacity(200) 

System.out.println(sb.capacity()); 

Output: 

16 

200 

 
In the above code snippet, StringBuffer is initially created with 16 by default.  If we know that the 

StringBuffer is going to grow to size of 200 at some point, we can use ensureCapacity to increase the 

minimum capacity to 200 so that it does not need to be relocated later. 

 

insert() 

inserts one string into another.  

The overloaded versions are given below: 

StringBuffer insert(int index, String str) 

StringBuffer insert(int index, char ch) 

StringBuffer insert(int index, Object obj) 

 
It is overloaded to accept values of all the primitive types, plus Strings, Objects, and CharSequences 

The index specifies the index at which point the string will be inserted into the invoking StringBuffer 

 

StringBuffer str2 = new StringBuffer("Hello Jim. How are you?"); 

str2.insert(6, "Cara and "); // inserts the string at index 6.   

                        // The remaining portion of the StringBuffer is pushed to the right. 

         

System.out.println(str2.toString()); 
 

Output: Hello Cara and Jim. How are you? 

 

void trimToSize( )  

Requests that the size of the character buffer for the invoking object be reduced to better fit the 

current contents. This improves performance if we know that the StringBuffer is not going to 

grow any further. 

    String s = "Hello"; 

     StringBuffer sb = new StringBuffer(200); 

     sb.append("Hello"); 
     System.out.println("Capacity "+sb.capacity()); 

     sb.trimToSize(); 

     System.out.println("Capacity after trimming "+sb.capacity()); 

     // some operation 

Output: 

Capacity 200 

Capacity after trimming 5 

 

 b Differentiate length() and capacity() of the StringBuffer class. 

length() returns the current length of the StringBuffer whereas capacity() returns the total allocated 

capacity. 

        StringBuffer sb = new StringBuffer(200); 

        sb.append("Hello"); 

        System.out.println("Capacity of sb: "+sb.capacity()); 

        System.out.println("Length of sb: "+sb.length()); 

Capacity of sb: 200 

4 



Length of sb: 5 

 

In the above code snippet a StringBuffer with minimum capacity of 200 is created.  A string of length 

5 is appended.  As can be observed from the output, the capacity of the StringBuffer is still 200, but 

the length of the content actually in the string is 5. 

 

 

 
 
6 

 Create a HashMap of data type(String, Integer). Read a string from the user. Convert the string to 

lowercase. Assume the string does not have any punctuation. Count the frequency of each word 

and store it in HashMap. Display the frequency of each word in          the string. 

 
Input String: HashMap provides the basic implementation of the Map interface of Java and stores 

data in Key and Value pairs and you can access them by an index of another type 

 

Program : import java.util.*; 

public class Main 

{ 

 public static void main(String[] args) { 

  HashMap<String, Integer> hm = new HashMap(); 
  Scanner sc = new Scanner(System.in); 

  String s = sc.nextLine(); 

  s= s.toLowerCase(); 

   

  for (String st: s.split(" ") ) { 

      int freq = hm.getOrDefault(st,0); 

      hm.put(st,freq+1); 

  } 

   

  //entryset 

  Set<Map.Entry<String, Integer>> kset = hm.entrySet(); 
  //Display 

  for(Map.Entry<String, Integer> me: kset){ 

      System.out.println(me.getKey()+" : "+me.getValue() ); 

  } 

   

 } 

} 

 

Output:  

HashMap provides the basic implementation of the Map interface of Java and stores data in Key 

and Value pairs and you can access them by an index of another type 

access : 1 
data : 1 

another : 1 

interface : 1 

type : 1 

pairs : 1 

can : 1 

java : 1 

provides : 1 

and : 3 

of : 3 

by : 1 
hashmap : 1 

map : 1 

value : 1 

key : 1 

you : 1 

 

 
 

7 



in : 1 

stores : 1 

implementation : 1 

index : 1 

them : 1 

an : 1 

the : 2 

basic : 1 

 

Explanation :  

 

 
7 

 Given a list of strings with names of the first names of your classmates seperated by a comma. 

Convert everything to uppercase. Add each name to a priority queue with Comparator that orders 

the names in descending lexicographical order. Display all the names. 

 
Sample input String : Lisa, Ron, Adam, Stanley, Cassie, Jenna. 

Program: 

 

import java.util.*; 

public class Main 

{ 

 public static void main(String[] args) { 

  PriorityQueue<String> pq = new PriorityQueue(Comparator.reverseOrder()); 

  Scanner sc = new Scanner(System.in); 

  String s = sc.nextLine(); 

  s= s.toUpperCase(); 
   

  for (String st: s.split(", ") ) { 

      pq.add(st); 

  } 

  System.out.println("\nPoll the queue\n"); 

  while(!pq.isEmpty()) 

        System.out.println(pq.poll()); 

       

 } 

} 

 
Output: 

Lisa, Ron, Adam, Stanley, Cassie, Jenna 

Poll the queue 

 

STANLEY 

RON 

LISA 

JENNA 

CASSIE 

ADAM 

 

 

 
7 

 

 
 
8 

 Write a program to check if a string is a palindrome without reversing the string. 

 
Sample Input String that are palindromes: 

Never odd or even 

Racecar 

 

import java.util.*; 

public class Main 

{ 

 public static void main(String[] args) { 

  Scanner sc = new Scanner(System.in); 

 

 
 

7 



  String s = sc.nextLine(); 

  s= s.toLowerCase(); 

  s = s.replaceAll(" ",""); 

  System.out.println(s); 

  boolean isPalim = true; 

  int len = s.length(); 

  for(int i = 0; i<len/2; i++){ 

      if (s.charAt(i) != s.charAt(len-i-1)){ 

          isPalim = false; 

      } 

  } 

  if(isPalim) 

      System.out.println("It is a palindrome"); 

  else 

      System.out.println("It is not a palindrome"); 

   

 } 

} 

 

Output: 

Never odd or even 

It is a palindrome 

Racecar 

It is a palindrome 

Reverse 

It is not a palindrome 

 
 



 


