

Department of Civil Engineering

<u>17CV832 – HYDRAULIC STRUCTURES</u>

Scheme and Evaluation

Q.No.	Question	Mark	СО	РО	RBL
1a	What are earthen dams? Mention the advantages of earthen dams	5	CO2	PO1	L1
Ans	An embankment dam is a large artificial dam. It is typic placement and compaction of a complex semi-plastic compositions of soil, sand, clay, or rock. Embankment types: the earth-filled dam (also called an earthen dam or to compacted earth, and the rock-filled dam. Advantages: Design procedures are straight and easy Local natural materials are used Comparatively small establishment and equipment at the cab is more stable for areas where earth movements	mound dams coerrain da errain da are requi	of vacome in of warm) ma	arious n two ade of	5
1b	A flow net is plotted for a homogeneous earthen dam of height 22m and free board 2m. The results obtained are, number of potential lines = 10; number of flow channels = 4. The dam has a horizontal filter of 30m length at the downstream end and the coefficient of permeability of the dam material is 5×10^{-4} cm/sec. calculate the discharge per m run of the dam.	5	CO2	PO2	L2
Ans	The discharge through a dam section is approximately given by the equation $q = K$. H. $\frac{N_f}{N_d}$ Where $K = 5 \times 10^{-4}$ $H = 22 - 2 = 20$ m $N_f = 4$ $N_d = 10$ Therefore, $\mathbf{q} = 4 \times \mathbf{10^{-6}}$ cumecs/m run of dam			5M	
2.	What are the causes of failure in earthen dam? Explain them with relevant sketches	10	CO2	PO1	L2
Ans	Causes of failure of earth dams: 1. Hydraulic Failure 2. Seepage Failure 3. Structural Failure Hydraulic Failure: 1. Overtopping of dams: Over topping failures result from the erosive action of			ion of	1
	water on the embankment. Erosion is due to un-controlled around, and adjacent to the dam. Earth embankments are			,	Any

Department of Civil Engineering

over-topped and therefore are particularly susceptible to erosion.

(3M)

2. Erosion of the Upstream Surface: the waves developed near the top surface due to the winds, try to notch out the sol from the upstream face and causes slip of u/s slope.

3. Erosion of the Downstream Surface: Due to rainfall, snow and winds the downstream surface of the dam also erodes. By providing a section of coarse materials here, this erosion can be reduced or prevented.

4. Erosion of the Downstream toe: This can take place due to erosion of cross currents that may come from spillway buckets and erosion due to tail water.

(3M)

Seepage Failure: Seepage failure of the dams is of the following types

1. Piping through the dam and its foundation: If the seepage force exceeds the weight of the material the water washes away the soil from the plate and creates a hole in the ground. This hole deepens as more and more material is taken away from it and extends longitudinally, making a pipe hole called "Piping in the dam"

Structural Failure:

Failure of upstream face during sudden draw down Failure due to sliding of foundation damage due to burrowing animals Failure of dam due to earthquake

Any (3M)

	A	12
3.	An earthen dam made of a homogeneous material 10 CO2 PO2	L3
	has the following data: Coefficient of permeability = 5×10^{-4} cm/sec	
	Level of top of dam = 200.0m	
	Level of deepest river bed = 178.0m H.F.L of reservoir = 197.5m	
	Width of top of dam = 4.5m	
	Upstream slope = 3:1	
	Downstream slope = 2:1	
	Determine the phreatic line for this dam section and	
	the discharge passing through dam, if a horizontal	
	filter of 6m is provided inward from the downstream to the dam	
Ans		10M
Ans	Solution: + 200.m	TOIVI
	+197.5 817.55	
	±194.5 *	
	4	
	3 12m	
	14.5m + 138.0	
	The state of the s	
	8 (8.5 st.) 6m	
	66 114.50	
	Equation of panabola (photosic line	
	of = 125x + 52	
	x = 68'= 114.5-6-58.5+17.55	
	(x = 67.55 m)	
	eg = 88' = 19.5m	
	$9 = \sqrt{x^2 + 9^2} - x = \sqrt{67.55^2 + 19.5^2} - 67.55$	
	$9 = \sqrt{x^2 + 9^2} - x = \sqrt{67.55} + 17.5$	
	(S = 2.76m)	
	.: Equation of parabola	
	The co-ordinates of parabola one takelated bellow	
	The co-ordinales of partial	
	a of seepage flow per with my	
	o 2.96 of the dam	
	10 7.92 a.sk.S	
	20 10.86 = 5x10 m/s x 2.96mx1m	
	30 13.16 [9 = 0.138 × 10 6 m3/s] per unit	
	40 (5.11 9 = 0.138×10 1575) REFI CLIVE	
	50 16.84 metre length of the dam.	
	60 18.40	
	an C	
	69.55	

4.	What is spillway? Explain a) Ogee spillway c) Chute spillway		10	CO3	PO3	L2
Ans	ogee spin way en enace spin wa	y a, syphon spin way	ı			
Alls	Spillway is the overflow portion of dam, over which surplus discharge flows from the reservoir to the downstream. It is a surplusing work, designed to carry flood water not required to be stored in the reservoir, safely to the river lower down.			2M		
	a) Free fall spillway In this type of spillway, the water arch dam (Figure 1) also for a desinclined downstream face (Figure the case with a sharp-crested was section of the crest. Water freely Since vacuum is created in the experimental ventilation of nappe is required effects of the jet.	ecked over flow dam with e 2). Flows may be free c eir or they may be supp y falls from crest under under-side portion of the	n a vertice dischargite orted alouther the actions of the falling	cal or a ng, as ong a m on of g jet, suf	ndverse will be narrow gravity. fficient	2M
	Top of spillway crest Free ove under gr Lip Under side of nappe to be ventilated Serious erosio caused here if apron etc. is pro	Werr wall or spillway wall				
	b) Ogee spillway Max reservoir Level Lower nappe	to shoot forward and g s the efficiency of the	an ogee he ogee profile sheet of ir. Flow is made y prevent the sheet the over to the sowing we flood par- get detact spillway	e or Sis moof the water over the to adding acet of flow spanning to the determinant of the total acet of the spanning to the determinant of the de	-shape. ade to lower falling he crest here to cess of lowing billway of the veying hrough om the to the	2M
	spillway surface, which reduce presence of negative pressure l					

2M

Department of Civil Engineering

surface. For discharges at designed head, the spillway attains near-maximum efficiency.

c) Chute spillway

A chute spillway, variously called as open channel or trough spillway, is one whose discharge is conveyed from the reservoir to the downstream river level through an open channel, placed either along a dam abutment or through a saddle. The control structure for the chute spillway need not necessarily be an overflow crest, and may be of the side-channel type, as has been shown in Figure.

Fig- side channel entry to a Chute spillway

d) Syphon spillway

A siphon spillway is a closed conduit system formed in the shape of an inverted U, positioned so that the inside of the bend of the upper passageway is at normal reservoir storage level. This type of siphon is also called a Saddle siphon spillway. The initial discharges of the spillway, as the reservoir

Fig- Siphon installed over the overflow spillway

level rises above normal, are similar to flow over a weir. Siphon action takes place after the air in the bend over the crest has been exhausted. Continuous flow is maintained by the suction effect due to the gravity pull of the water in the lower leg of the siphon.

5	Design and draw the cross section of an Ogee spillway, when	10	CO3	PO3	L4
	the maximum head over it is 2.67m, the height of spillway is				
	restricted to 30m				

2M

Ans	Solution: Data given:	
	Max head ones spillway = Hd = 2.76 m.	
	height of spillway P= 30 m.	
	since, P = 10.87 > 1.33, 9+ is a high oneylow	21.
	spillway for which the effect of velocity of	2N
	spillway for concerne age	
	approach is negligible.	
	a mian of DIS profile.	
	Let can keep ols face of	
	The dis profile suggested day WES, is given by	
	x = 2 H2.85 y	
	1.82	
	Hence $y = \frac{x^{1.85}}{2 \times 40^{0.85}} = \frac{x^{1.85}}{2 \times 0.96^{0.85}}$ (1. 4 = 2.76m)	
	(a) 41.81 >0	
	Assuming the trangent point for the dls slope as	
	Amorning the Kongo	
	$\frac{\partial x}{\partial y} = \frac{1}{0.75} \longrightarrow \emptyset$	
	Differentations the egro w. r. to x, we get	2N
	du 1.02 d 1.82-1 . 0.82	
	$\frac{dy}{dx} = \frac{1.85 \times (.85^{-1})}{4.74} = 0.39 \times 0.85^{-1}$	
	equating equs @ & 3	
	0.39 x°.35 = 1	
	: x = (3. A) 10.85	
	$\chi = 4.25m$	
	(x = 4.25m) from eq ² (1) $y = \frac{4.25}{4.94}$, $y = 3.07m$	
	Hence co-ordinates of the tangent points are	
	$(0,y) = (A \cdot 20, 3.04)$	
	i The co-ordinale of DIS progite and	
	α_{cm} α_{cm} α_{cm} α_{cm}	
	0 0	
	0.5 0.058	
	1.0 0.210	
	(.5 0.446	
	2.0 0.459	
	2.5 1.147	
	3.0 1.607	
	3. 5 2.137	
	A.O 2.736	
	A . 25 3.07	

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore – 560 037 T:+9180 28524466 / 77

CMR
INSTITUTE
OF TECHNOLOGY

Department of Civil Engineering

CI: CCI:

Prof. Usha A Prof. Divya Viswanath