USN					

Internal Assessment Test II – June 2021

Sub:	Hydrology a	Hydrology and Irrigation Engineering						Su Code		18CV63	Bi	ranch:	CIV	IL	
Date:	23/06/2021	Duratio	on: 90	min's	Ma Marl		50	Sem Sec			ΈB	'	O	BE	
		<u>A</u> 1	ıswer	FIVE	FULL (Quest	ions					MA	RKS	СО	RBT
1 (a)	a) Define Evaporation. With a neat sketch, explain the measurement of evaporation using ISI standard class A pan.									f [()5]	CO1	L2		
(b)									, [()5]	CO1	L2			
2	The rate of a follows:	rainfall 1	or suc	ecessive	30 min	utes p	erio	d of a 4	hou	ır storm	are a	s [()8]	CO1	L2
	3.5, 6.5, 8.5 4.5 cm/hr. C														
3 (a)	a) Define Hydrograph. Explain various components of the flood hydrograph.							[()6]	CO1	L2				
(b)	hydrograph for the same catchment							t [()8]	CO1	L2				
	Time (hr)	0 4	8	12		20	24	28	32	36	40				
	Ordinat es of 4hr	0 20	80	130	150	130	90	52	27	15	5				
4 (a)	hydrograph.							t [()8]	CO1	L2				
(b)	OR b) Explain with neat diagram of a (a) Simple infiltrometers b) Double ring infiltrometers.							g [()8]						
5 (a)	Rainfall of n durations on a flow at the ou	a catchn	nent of	f area 2'	7km² pr	oduce	d the	e follow	ing I	hydrogr	aph o)5]	CO1	L2
	Time from start of rainfall (h) -6 0 6 12 18 24 30 36 42 48 54 60 66 observed flow(m3/s) 6 5 13 26 21 16 12 9 7 5 5 4.5 4.5							†							
(b)	A Strom over of rainfall of	the storr	n is as	follow		d dura	tion	of 14 h	rs. T	he mass	curv)5]	CO1	L2
	Time from start of storm (h) 0 2 4 6 8 10 12 14 accumulated rainfall(cm) 0 0.6 2.8 5.2 6.6 7.5 9.2 9.6							1							
	If the Φ-inde hyetograph &	x for the	e catcl	hment i	s 0.4 cn	n/h. d	etern	nine the	e eff	ective r	ainfal	1			
												[]	[0]	CO1	L2
	CI									C	CI				

Hydrology and irrigation Engineering

of (a) Rainfall of magnitude 3.8cm and 2.8cm occurring on two consecutive 4-br durations on a catchment of area 27 km² produced the following hydrograph of flow at the Outlet of the catchment of area 27 km² produced the following hydrograph of flow at the outlet of the catchment Estimate the rainfall excess and pindex

Time from Start tosainfallh	-6	0	6	12	18	24	30	36	42	48	54	60	66
Observed low (m3/5)	6	5	13	26	21	16	12	9	7	5	5	4.5	4.5

Solution N= 0.83 x (27)0.2 = 1:6 days = 38.5h

by interpection, DRH starts at t=0, has the peak at t=12h and Ends at t=48h As N=36h appears to be more Stais ary than N=38.5h in the present case DRH is assumed to Exist from t=0 to 48h.

Area of DRH = $(6 \times 60 \times 60) \left[\frac{1}{2} (8) + \frac{1}{2} (8 + 21) + \frac{1}{2} (21 + 16) + \frac{1}{6} (16 + 11) + \frac{1}{2} (11 + 7) + \frac{1}{2} (7 + 4) + \frac{1}{2} (4 + 2) + \frac{1}{2} (2) \right]$

= Total direct runoff due to Storm

$$\phi$$
 index = $\frac{6.6 - 5.52}{R}$ = 0.135 cm/h

(05)

(6b) A Strom Over a catchment of area 5km² had duration of 14hrs
the mass curve of rainfall of the Storm is as follows

if the pindex for the catchment is ornamly determine the effective vainfall hydrograph & the volume of direct sunoff from the catchment due to Storm

1	10 ¹⁰ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7) · · · · · · · · · · · · · · · · · · ·	è 13	1 .13	1 11
ı	2.	3	ч	5	6	7
0	_	0	_	- 1		_
2	2	0.6	0.6	8.0	0	0
4	2	2.8	2.2	0.8	1.4	0.7
-6-	2	5.2	રુ.4	0.8	1.6	0.8
8	2	6.7	1.5	0.8	0.7	0.35
10	2	7.5	0.8	0.8	0	0
12	2.	9.2	1.7	0.8	0.9	0.45
14	2	9.6	ο. ίγ	0.8	٥	0

our Deline unit hydrograph. Explain the assumption made in deriving the unit hydrograph

Assumption: The effective validal (1cm depth) is uniformly distributed within is duration (D-brs)

1cm Excess Rainfall Uniformly distributed over 4-brs

Assumption -02: The Effective Rainfall is Uniformly distributed throughout the catchment

Assumption -03:

The base periods of direct runoff hydrograph remains
Same for constant duration Effective rainfall
(Even if the intensity (varies)

Assumption-ou

The direct runoff response to the Dainfall Excess is assumed to be linear this know as Principle of Linearity

Assumption 05:- The Shape of Direct hydrograph for a Given Excess of rainfall remains Same irrespective of time of conmencement of rainfall this is known as principle of time invariance

- Derivation of Unit hydrograph

The Unit hydrograph can be derived from a total Stream flow hydrograph at a Given Stream gauge location along with the following information.

olf Storm hydrograph

024 The Basin Area

037 The Basin - averaged rainfall depth

out The duration over which the Excess precipitation occurred

Step-01 - Select Appropriate Preciptation Event

The rainfall records of the dialinage basin are Scanned to Lind a Single isolated Storm of desired duration (D-brs) which is Uniformly distributed over the Basin and at a Uniform rate over the duration

Step 02 - Remove Base flow contribution

- · Corresponding sunoff hydrograph is plotted on a Graph and Base-flow is Separated by any of the methods.
- . Then Ordinate of DRH at any time is obtained as different blu the total runoff and Baseflow at the time

Removing Basellow from the hydrograph

Step-03 - colculation Quick - Response Volume

> The total Volume of runoff is computed by calculating
the area of direct runoff hydrograph

i.e Volume of runoff = Area of DRH

calculate the & volume of Quick-Response Runoff

Step-ou - Determine Excess Rainfall / Runoff from Basin

The depth of direct runoff lexcess rainfall is computed by dividing the volume of direct runoff by the area of basin

Step-05 - Determine ordinate of Unit hydrograph

ordinates of DRII are divide by depth of direct runoff

Ordinates of Unit hydrograph = Ordinates of DRH Excess sainfall

Peak discharge: The highest points on the hydrograph where rate of discharges Greatest

Lag time: the time interval from the centre of massof

Time to peak: Time interval from the Stort of the resulting hydrograph

63 03(b)

Time	Ordina	ates of 4-h l	OH (m ³ /s)	1012h (m3))	Osdinate o)
נט	A	Blagged by 4-b1		(2+3+u)	(m315)
0	0	00	00_0	0	0
4	20	0	-	20	6.7
8	80	20	0	100	33.3
12	130	80	20	530	F6. F
16	150	130	80	360	120
20	130	150	730	410	136.7
24	90	130	150	310	123.3
28	52	90	130	272	90.7
32	27	52	90	169	56.3
36	15	27	52	94	31.5
40	5	15	27	47	15.7
44	0	5	15	20	6.7
48		0	5	5	107
52		17.	0	U	b

Define Evaposation with a Neat Sketch Explain the measurement of Evaposation Using Isl Standard class Apan it is the process by which a liquid changes to Gaseous State at the free Susface through transfer of heak energy

- This Evaporation pan should confirm to 15-5973: 1976
- et consists of a circular copper vessel of 1220mm Effective diameter, 255mm Effective depth and a wall thickness of 0.9mm
 - · The thermometer is assembled to record the Various
- · The A wire mesh cover with hexagonal openings is provided at the top prevent Entery of foreign

1(0):

Measurement of infiltration

infiltration rates are required in many hydrogical problem such as runoff Exitmation Soil moisture studies in agriculutral et the different methods of determination of infitration are

- . & Use of infiltration meter
- . Hydrograph analysis method

· infiltro · meter are two types

a) Flooding type in litte meter

DE Rainfall Simulation

· Hoston's Equation

1p = infitration capacity Cinches (hours)

for - minimum infiltration capacity

t = time Since the Start of rainfall

K- constant depending Upon Soil types and Vegetable cover

Question 2.	latensity com/hr)	Depth of reinfall	Øst (cm)	ER (CM)
0.5	3-5	Ccm)	2.25	13-17-5 4-75
ľ	6.5	VIX 13	2.25	29.25 10.75
1.5	85	77	2.25	88.R5 14.75
2	7-8	15.G 12.8	2.25	28 10.55
2.5	6.4		2.25	18 5.75
3	4.0	8 8	2.25	
3.5	4.0	12	2.25	18 5.75
Ч	6.0			

Total rainfall

= 96.4cm/

Total effective rainfall:

= 5.25 cm/hm

W- index: