1. With neat diagram, obtain an expression for inductance of a 3 phase overhead line with unsymmetrical spacing

Inducia Tierce conductors A, Bgc of a 3 p line carriging merents IA. IB & Ic rispectively as shown in figure une de des de lie spacings between the conductors as let de la conductor de la de la de la de la de la délance relates tc=0. consider the flux linkages with wondretter A. There will be flux hikages with nonducture 4 due to its onen cuerent falso due to nutral inductance effects of IBS Ic, Flux hintages with conductive A due to its own cuerent. $= \frac{l_{10}l_{\text{B}}}{2\pi} \left[\frac{1}{4} + \int_{a}^{a} \frac{dx}{x} \right]$ This linkages with conductor A due to current IB, $=\frac{ln \sigma_B}{2\pi}\int \frac{dn}{n}$ Phys linkages with concluence A due to current Ec. $=\frac{u_{o}I_{c}}{2\pi}\int\frac{dx}{x}$ $- (3)$ Total flux linkages with conductor 4 % (adding the 30g) $\begin{array}{lll} \n\sqrt{24} &=& \frac{1}{24} \int \frac{1}{4} + \int \frac{d\lambda}{\lambda} \end{array} \begin{array}{l} \n\end{array} + \frac{ln \overline{24}}{24} \begin{array}{l} \n\frac{d\lambda}{\lambda} + \frac{ln \overline{24}}{24} \end{array} \begin{array}{l} \n\frac{d\lambda}{\lambda} \\
\frac{d\lambda}{\lambda} \\
\frac{d\lambda}{\lambda}\n\end{array}$ $=\frac{y_{0}}{2\pi}\left[\left(\frac{1}{4}+\int_{0}^{2}\frac{dz}{\pi}\right)z_{4}+\frac{1}{8}\int_{1}^{2}\frac{dz}{\pi}+\int_{1}^{2}C\int_{1}^{\infty}\frac{dz}{\pi}\right]$

(2) un symmeterical spacing :when three phase hire concluderes are not equidisfant from card octres, the conductor spacing is said to be Prégnancterient. noutre son ils conditions, et flux linkages & inductance of each phase are not the same. A différent inductance en each phase results in megnal voltage drops in être three phases even if ete currents in the conductors are balanced. Hence the vlg recienced at the end will not be the same for all phases The velg drops are egnal in all conductors, ne generally interchange the positions of the conductors at regular les internals along the line so that the conducter occupies the chignnal plaition of enery other conductor oner an equal distance. En la du exchange of positions is kaowa as Transpresition position 1

C

Fig shows the 3-6 transposed line having norg moretaired spacing. Let us assume tout each line of the three Assume the borlanced conditions is IA+IB+IC=0. sections is en un length $I_{4} = 1 (1 + j^{o})$ $L_{\beta} = 1(-0.5 - j0.866)$ $\begin{bmatrix} 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} -0.5 & 4 \end{bmatrix} \begin{bmatrix} 0.866 \end{bmatrix}$

The total
$$
f(x)
$$
 divides $\int x \, dx$ of a
\n $\int_{R_1} x \frac{1}{2x} \left[\frac{1}{4} - \log_1 x \right] dx - \frac{1}{4} \log_1 4x - \frac{1}{4} \log_2 4$
\n $\int_{R_1} x \frac{1}{2x} \left[\frac{1}{4} - \log_1 x \right] dx - \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4$
\n $\int_{R_1} x \frac{1}{2x} \left[\frac{1}{4} - \log_1 x \right] = -\frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4$
\n $= \frac{1}{2x} \left[\frac{1}{4} - \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4 + \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4 \right]$
\n $= \frac{1}{2x} \left[\frac{1}{4} - \frac{1}{4} \log_2 4 + \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4 - \frac{1}{4} \log_2 4 \right]$
\n $= \frac{1}{2x} \left[\frac{1}{4} + \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac$

$$
i_{c} = 10^{3} \left[\frac{1}{2} + 2 \log \frac{[d_{1}d_{2}]}{2} + j \right] + 32 \log \frac{d_{2}}{d_{2}} + j_{m} = 0
$$
\n
$$
j_{r} \frac{d_{r}}{dx} = \frac{1}{3} \left(2 + 1 - 5 \frac{1}{6} \frac{1}{6} \right)
$$
\n
$$
= \frac{10}{3} \left[\frac{1}{2} + 2 \log \frac{[d_{2}d_{3}]}{2} + j \right] + 332 \log \frac{d_{3}}{d_{2}} + j_{m} = 0
$$
\n
$$
= \frac{10^{3}}{3} \left[\frac{1}{2} + 2 \log \frac{[d_{1}d_{3}]}{2} + j \right] + \frac{1}{2} + 2 \log \frac{[d_{2}d_{3}]}{2} + j_{m} = 0
$$
\n
$$
= \frac{10^{3}}{3} \left[\frac{3}{2} + 2 \log \frac{[d_{3}d_{2}d_{1}]}{2} + j \right] + 332 \left[\log d_{3} - \log d_{2} + \log d_{1} - \log d_{1} \right]
$$
\n
$$
= \frac{10^{3}}{3} \left[\frac{3}{2} + 2 \log \frac{[d_{3}d_{2}d_{1}]}{2} + j \right] + 332 \left[\log d_{3} - \log d_{2} + \log d_{1} - \log d_{1} \right]
$$
\n
$$
= \frac{10^{3}}{3} \left[\frac{3}{2} + 2 \log \frac{[d_{3}d_{2}d_{1}]}{2} \right] \times 10^{-3} + j_{m}
$$
\n
$$
= \left[\frac{1}{2} + \frac{1}{3} \log \frac{[d_{3}d_{2}d_{1}]}{2} \right] \times 10^{-3} + j_{m}
$$

2. A 3-phase 50Hz line consists of three conductors each of diameter 21mm. the spacing between the conductors is as follows. AB=2.5m, BC= 4.5m, CA = 3.5m Find the capacitance and capacitive reactance per phase per km of the line. The line is transposed at regular intervals

3. a.Calculate inductance of each conductor in a 3-phase, 3 wire system. Conductors are arranged in a horizontal plane with spacing d31=8m, d12=d23=4m. the conductors are transposed and have a diameter of 2cm

and will not and equal in all conductors, we generally
The velocities are equal in all conductors, we generally
internals orlong the line to that the conductor occupies
the congrision plention of enery other conductors is Transportion position 1 \mathbf{z} \mathbf{z}

Advantages:

- When conductors are not transposed at regular intervals, the inductance and capacitance of the conductors will not be equal.
- When conductors such as telephone lines are run in parallel to transmission lines, there is a possibility of high voltages induced in the telephone lines. This can result in acoustic shock or noise. Transposition greatly reduces this undesired phenomenon.
- In practice, however, conductors are not transposed in the transmission lines. The transposition is done in the switching stations and the substations.

4. Derive an expression for capacitance of a 3 phase single circuit line with Equilateral spacing

apacitance of a 3- ϕ onechead line !-In a 36 TL, the capacitance of each conductor is considered instead of aparitance from conductor to conducter capacitance of conductor can be found at 1. Egnal spacing 2. Moymouetrical spacing. 1. Symmetri cal spacing :fig shows the three conductors A, BSC of the 8-6 encehead T.L haming charges QA, ABSQC apridistant at d'Ineter apart from cach other. we should find the agaitance from the line conductor to rentral line un étrie symmetrical spaced hire ouvail p.d blas the concluderer A & enfimite neutral place à ginen by, $V_A = \int \frac{a_A}{2\pi n G} dx + \int \frac{a_B}{2\pi n G} dx + \int \frac{a_C}{2\pi n G} dx$. $=$ 1 Qx hoge of + QB log + qc hog + d
2xco + QA + QB + Qc m = $\frac{1}{2\pi 6D}$ $\left[\begin{array}{ccc} a_{A} & b_{C} & \frac{1}{2} & + & (a_{B} + a_{C}) & b_{C} & \frac{1}{2} \\ + & 0 & \log_{e} a_{C} & \frac{1}{2} \end{array}\right]$ Assuming balanced supply, Qx+ aB+2c. $=\frac{1}{2\pi\epsilon_0}\left(\frac{\alpha_4}{2} \left(\frac{\omega_2}{2} - \frac{1}{2} - \frac{\omega_2}{2} \frac{1}{2} \right) \right)$ $\frac{Q_{A}}{2\pi\epsilon_{0}}\left(\frac{log\frac{d}{A}}{A}\right)$

volte \mathcal{Q} hoe a 2000 Capacitance of conductor 4 wrt renteal) α $2\pi G$ log J. 2π Capa \overline{M} le **XDe** 19181 ïΪ

5. Obtain an expression of an inductance of conductor due to internal flux and external flux

Inductance of a conducter due to the Internet Consider a long, straight conductor noite saching meters of casaying a circaint I amperes as shown in the Z^{I} ω supply. \overline{I} and 1850 - 1954 audit and The value of inductance due to enternal flux is given to the ratio of flux linkages to cuerent. -The esactionne of fleur inductance of teareniveron line is obtained la sonsidering the flux visiole each conductor Served) GREEN LAD andysing Flong, Anjere's Lans, He Bee then monf in ampere tyens around are any closed loop is egnal to the colosed by the path. min_{d} = $dH.dL = T$ let the nagnetic field intensit at a point n nelses at all points as field is symmetrical). \therefore ϕ dl = 2x2.

From the following equations:

\n
$$
m = \frac{6Hx \cdot dL - Ix}{Hx \cdot \frac{Ix}{2x}} \cdot \frac{1}{\sqrt{4x - \frac{Ix}{2x}}}
$$
\n
$$
m = \frac{7Hx \cdot \frac{Ix}{2x}}{1 - \frac{1}{\sqrt{4x}}}
$$
\n
$$
m = \frac{7x}{1 - \frac{1}{\sqrt{4x}}}
$$
\n
$$
m = \frac{7x}{1 - \frac{1}{\sqrt{4x}}}
$$
\n
$$
m = \frac{2x}{1 - \frac{1}{\sqrt{4x}}}
$$
\n
$$
m = \frac{2x}{1 - \frac{1}{\sqrt{4x}}}
$$
\n
$$
m = \frac{2x}{1 - \frac{1}{\sqrt{4x}}}
$$
\n
$$
m = \frac{1}{\sqrt{4x}} \cdot \frac{1}{2x}
$$
\nFor *u* is a real, and *u* is a

This thus this with current
$$
ln
$$
thick thus ln thick
\n $l_{ex}dx = \frac{1}{x} \frac{dx}{dx}$.
\n $d\psi = \frac{1}{x} \frac{dx}{dx}$.
\n $d\psi = \frac{u_0 E x^3}{x^2} dx$.
\n $d\psi = \frac{u_0 E x^3}{x^2 x^4} dx$.
\nThe total $lim_{x \to 0} ln$ is the $lim_{x \to \infty} ln$
\n $lim_{x \to 0} ln$ is from the $lim_{x \to \infty} ln$ thick to $lim_{x \to \infty} ln$
\n $lim_{x \to 0} ln$ is from the $lim_{x \to \infty} ln$ thick to $lim_{x \to \infty} ln$
\n $lim_{x \to 0} ln \frac{1}{x} ln \frac{1}{x^2} ln \frac{$

Traindance of a conductor due to External Flux To find the flux linkages of the cronductor due to the $\overline{\mathfrak{n}}$ esoternal flux. we consider the flux linkages of an 130 arted conductor due to that poetion of the external flux which hies between two points distant D, & D2 meters ferom etre centre of nendritier at P, & P2 distances rispectively The conduction calarier a cultient I, considér a provider element volicit is a niler prom the centre of concludeur. The field Intensity at this point is Hn. The mmf around the element is, 2π att $n = 1$ H_n = $\frac{1}{2\pi n}$ The flux desirity Br, at this goint is given by, B_{Λ} , μ , $H\pi$. $= M \frac{1}{2\pi n} w b \frac{1}{n^2}$ The flux dq in the fubiles element is given by dp = Baxdrx/n (Anial length is Considéred as Im) $d\phi = \frac{\mu \Gamma}{\sqrt{\pi}} \times dx$ $2\pi n$

The flux linkages d'4 Inster avec equal to du Pince flux
external to the conductor links all the current in the Obtained by entregrating du franc D, to D2 $\psi_{12} = \frac{1}{2\pi n} dx$ $\frac{u}{2\pi} \int_{0}^{2\pi} \frac{du}{u}$ = $\frac{UL}{2\pi}$ $ln \pi / \frac{D_{2}}{D_{1}}$ = $\frac{UL}{2\pi}$ $ln(\frac{D_{2}}{D_{1}})$ For relative permeability, Ma=1, $\Psi_{12} = \frac{\mu_0 \Sigma}{2 \pi} ln \left(\frac{D_2}{D_1} \right)$ = $\frac{2}{\sqrt{1-x}}\sqrt{1-\frac{1}{2}}$ $ln\left(\frac{p_2}{p_1}\right)$ \int_{0}^{∞} and \int_{0}^{∞} $\sqrt{\frac{1}{2}} = \frac{8x}{\pi^{3}}$ $\ln\left(\frac{D_{2}}{D}\right)$ The inductance due to flux bâteaux. included 6/1 P, 82 $L_{12} = \frac{\psi_{12}}{T} = 2x10^{3}x$ $ln(\frac{p_{2}}{p_{3}}) = 2x10^{3}$ $ln(\frac{p_{2}}{p_{1}})$ In the external flux is considered to be extended from
the surface of conductive to co, then the total $\int \psi_{12} = \int \frac{\mu_0 I}{2\pi r} dx \omega_0^2 T$

$$
mutwell - GMD blo - pboes - A S B G
$$
\n
$$
D_{AB} = \sqrt{Dab \times Dab' \times Dais \times Dais}
$$
\n
$$
mutu - GMD bln phases - B S C G
$$
\n
$$
D_{BC} = \sqrt{Dac \times Dac' \times Dac \times Dac'}
$$
\n
$$
D_{CA} = \sqrt{Dac \times Daa \times Daca \times Dac'a'}
$$
\n
$$
D_{CA} = \sqrt{Dac \times Daa \times Daca \times Dac'a'}
$$
\nEq *mutual - GMD*, $D_m = \sqrt[3]{Dag \times Dac' \times Daa}$

= $\frac{u_{0}}{2\pi}$ $\left[\frac{1}{4} - \log x\right]$ $\mathbb{Z}_{A} - \mathbb{Z}_{B}$ heg ds - \mathbb{Z}_{C} leg ds \mathbb{Z}_{A} + \mathbb{Z}_{B} + \mathbb{Z}_{C}) As $I_A + I_B + I_C = 0$
 $V_A = \frac{\mu_0}{2\pi} \left[\left(\frac{1}{4} - \log x \right) I_A - \log d_S I_B - I_C \log d_Z \right]$