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Instructions to Students :

Answer any 5 questions.Each question carries 10 marks.

Answer any 5 question(s)
Q.No Marks
1 Explain the functions of various components in a steam turbine governing system with necessary diagram. 10
2 Derive the transfer function and the block diagram of complete ALFC loop. 10
3 Draw the block diagram of two area system with necessary equations. 10
4 What are tie line oscillations? What determines the frequency of these oscillations? 10

Two control areas of capacity 500 MW and 10000 MW are connected through a tieline. The parameters of each area on its own
5 capacity are R= 1 Hz/pu MW and D= 0.02 pu MW/Hz. There is an increase of 200 MW of load in area 2.Determine the steady 10
state frequency deviation and change in tie line flow.

Two control areas are connected via a tie line with the following characteristics .
Area 1: R1=1 %, D1=0.8 pu, base MVA 1000
6 Area 2: R2=2 %, D2=1.0 pu, base MVA 1000 10
A load increase of 100 MW occurs in area 1.What is the new steady state frequency and the change in tie line flow if the
nominal frequency is 50 Hz. Repeat if the load changes in area 2
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Figure 9-7 Simplified functional diagram of the primary ALFC loop.

megawatt increment AP,. This flow increase translates into a turbine power
increment AP in the turbine (not shown in the figure).

Very large mechanical forces are needed to position the main valve (or gate)
against the high steam (or water) pressure, and these forces are obtained via
several stages of hydraulic amplifiers. In our simplified version we show orily
one stage. The input to this amplifier is the position x,, of the pilot valve. The
output is the position x; of the main piston. Because the high-pressure hydraulic
fluid exerts only a slight differential force on the pilot valve, the force
amplification is very great.

The position of the pilot valve can be affected via the linkage system in three
ways:

1. Directly, by the speed changer. A small downward movement of the linkage
point A corresponds to an increase AP, in the reference power setting.

2. Indirectly, via feedback, due to position changes of the main piston.

3. Indirectly, via feedback, due to position changes of linkage point B resulting
from speed changes.

It should prove a useful exercise for the reader to find, qualitatively, the
workings of the mechanism. For example, give a “raise” command to the speed
changer and prove that this indeed results in an increase in turbine output.




MICA>SUITU 11 ITHILIICICIS DUl 111 Oul dandlysis we snadll rauncr CXpress unem a
power increments expressed in megawatts or per-unit megawatts as the case ma
be. The movements are assumed positive in the directions of the arrows. Th
governor output command AP, is measured by the position change Ax.. Th
governor has two inputs: |
1. Changes AP, in the reference power setting |
2. Changes Af in the speed of frequency of the generator, as measured by Ax,

An increase in AP, results from an increase in AP, and a decrease in Af. W|
thus can write for small increments

AP, = AP, _% Af MW (9-21

The constant R has dimension hertz per megawatt, and is referred to a
regulation or droop. (For numerical values see Example 9-2 below.) Laplag
transformation of Eq. (9-21) yields

AP,(s) = AP,(s) — % Af(5) (9-2

Using well-known block diagram symbols we have represented the govemJl
as shown in Fig, 9-8.

9-3-2 Hydraulic Valve Actuator

The input position Axj, of the valve actuator increases as a result of an incre
command AP, but decreases due to increased valve output, AP, . Equal i
creases in both AP, and AP, should result in Ax, = 0. We can thus write

AXD=AP9—APV Mw (9'

For small changes Ax,, the oil flow into the hydraulic motor is proportio
to position Ax,, of the pilot valve. Thus we obtain the following relationship f
the position of the main piston:

APy = ky [ Axp dt -

The positive constant ky depends upon orifice and cylinder geometries
fluid pressure.

Upon Laplace transformation of the last two equations and upon elimi
tion of Ax;, we obtain the actuator transfer function

AP, 1

G"(‘)=Z?§ T+l

(9-2
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Figure 98 Linear model of the primary ALFC loop (minus the power system response),

where the hydraulic time constant

1
i

typically assumes values around 0.1 s.

The hydraulic valve actuator has been represented by the transfer function
Gy(s) in Fig. 9-8.

9-3-3 Turbine-Generator Response

In normal steady state and via the mechanism described in Sec. 4-9 the turbine
power P, keeps balance with the electromechanical air-gap power Py, resulting
in zero acceleration and a constant speed or frequency. Perturbations AP, and
AP; in these powers will upset the above balance. If the difference power,
APy — APg, is positive the turbine generator unit will accelerate; if negative it
will decelerate.

The turbine power increment AP, depends entirely upon the valve power
increment AP, and the response characteristics of the turbine. Different turbine

types vary widely in this regard. It is possible to express the turbine dynamics in
terms of a turbine transfer function

Gym—1 (9-26)

In App. D we have derived G, for the most common turbine types. A
so-called nonreheat steam turbine has the simplest transfer function, consisting of
a single time constant, i.e.,

1
1+ 5T,

G r= (9'27)




Figure 6.19 Torques acting on a generator.

Figure 6.18(b) and (c) shows how the block diagram can be reduced. T s the governor time constant. It can
be scen that it depends on the speed regulation R and on the gain of the hydraulic amplifier, K.

Generator Model

Th?ne are two torques acting on a generator: the shaff torgue (due to the prime mover) and the electromag-
netic torque, neglecting losses. The shaft torque tends to accelerate the generator in the positive direction of
rotation and the clmmangnc torque in the negative dircction, as shown in Fig. 6.19.

The total accclcrating torque is given by = ke ;

okt AT
From Newro s laws of motion, we have for rotatory motion
s la=T ©n

Chaprér 6: Automatic Generation Control

We can express both &, and @, in terms of electrical radians to get

&5,
%;'i_m‘*z =P -R=Ppu 6.17)
per unit mechanical power [7, in MW/G].
synchronous speed in clectrical rad/s
2% :
P, = acceleration power
Equation (6.17) i called the suing equation. We can lingaszg Eq. (6.17) to get
28 ©618)
e
We express the speed deviation also in pu to get
e ddw_ L ap - 6.1
4 =7 Ak An) 619)
I Taking the Laplace transform we get .
- = (6.20)
Aa)= 517 (AR.6)-AR() ©20

I Eq.(6.20) can be written in a block diagram form, as shown in Fig. 6.20.

APs)
Figure 6.20 Model of generator.

._Load Model

 \We have seen the load models in detail in Chapter 2. Some loads exhibit variation in active power drawn
with respect to frequency variations. This relationship is given by

¢ & ARy, =DAw
or D =load damping constant
7 p= iy ©621)
Aw

Where ARy, = frequency-dependent load.

©6 |

66° Mamems -o gk

where /is the moment of inertia,
a isthe angular acceleration,
T'is the net torque. ;
Equation (6.7) can be written as
- (68)

where 8, the rotor angle, is now converted into an angle, measured with respect toa synchronously rotating
reference axis such that v

0.=b -0, 69)
where @, is the synchronous speed in rad/s,
&, is the angular displacement in rad.
From Eq. (6.9) 4
2 2
ddgm o ddgm (6.10)
Substituting into Eq. (6.8), we get
d’s, 3
I—2=7 ~T N-
P e m (6.11)
Multiplying both sides by the angular velocity @, we get
2 G
ﬂ)mlddfz" =0, (T, -T)N-m 6.12)
where
@, I= M= angular momentum or inertia constant
©, T, = P, = mechanical power input at the shaft minus roational losses
@, T, = P, = clectrical power output minus losses
We can write Eq. (6.12) as
(6.13)

M depends on the speed @), However, since the deviation in speed is limited, M can be assumed tobe a |
constant. The value of M varies over a wide range depending on the rating and type of the generator. Hence,
another constant A is sed to specify the cnergy stored in the machine. #

_ Stored kinetic energy in M] at synchronous speed \ 1/ 1170 (6.14)
HE Machine rating in MVA I
zk so called inertia constant. It lies in a narrow range for different machines.
nd Hare related as follows ;
= 20y sfmech rad - (615)
s 7 :
K ¢ U= MVA rating of machine. In pu, M=2H. )
% Eq. (6.13) can be written as :
2H 45, (6.16)
o, di*

46« Mathemaucs: viouss ot nuey

= D (100 e
Dl Dx((0)< 15 0 =175
Negloceng loses, the change in elctrical outpu ofthe generaor, A2 is equal 0 the ond Therefoe

AP =
1 o =4 +DA¢ e
where AR, = non-frequency sensitive load change
DAw = frequency sensitive load change
Or AP ()= AP, (s)+ DAw(s)

(6:23)
Bquation (6.22) can be introduced into Fig. 6.20 to obain Fig. 6.21. w7

Figure 6.21 Generator + load model.
AP (s)

Figure 6.22 Standard first-order model for generator + load.

In Fig, 6.21, 2 can be replaced by M, where both arein pu. The transfer function of Fig. 621 can be writ

ten in the form of a standard first-order transfer function Tf'r:; as shown in Fig. 6.22,

where 47 nodd

K. is the power system gain and
T, is the power system rime constant.
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Figure 6.29 Block diagram of complete ALFC, .-

3

We are now interested in deriving the effect of change in load on the frequency. without chal;gc in dxe'mfc;'-.
ence set point. By changing the reference set point, we can set the system to give specified frequency at any

load point as explained in Fig. 6.7(b). This is a secondary control to be discussed later. Here, we assume P,

is kept at a constant value so that AP, =0. We now find the transfer function

diagram of Fig. 6.29,

Aas) = -AB (5)

The transfer funcrion is given by

T(s)=

—AL (s)

mitdl
2Hs+ D

Aas)
—APR, (,)'

1F 1 1
|1 R(2H:+D)(1+:TG)(I+:T-,R]

(A +5T5)(+5Thy)

(1

(2Hs+D)(l+:7;)(l+:Tn)+%

+5T5)(1+5T55) }

(2H:+D)(l+:1}_)(l+:7'n)+-}?-

An alternage expression for the transfer function commonly used is

T(s)=

K,

(14T, (1+5T5) (1 +5Ta )+ 7 |

From the block

(6.29a)

AT

.~ (6.29b)

( K, : sl e &
1+s7, ; *33
Ky Il = 15 ) o
l+(l+’Tp-)(l+’Tc)(l+‘Tm)R NPT AT 1
K, (1+5Tg)(1+5Trm) ‘, (630)
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7.2 - Tie-Line Control with Primary Speed Control
Let us consider a two-area system as shown in Fig. 7.1.
Let us take the positive power flow to be 7, 10 be the power flow from area 1 to area 2. The power floy,
on the tie-liné from area 1 to arca 2 is

B
o= a8, o)
B * ; 12‘ ’
where
; X=X+ X+ X
Equation (7.1) can be linearized about an initial operating point & = Jy and &, = &y as
APy =55 cos5, - 5,086, )
#
A8, =088, @3
Lec T= B o8, ~ 8) = P coxB = B) 04
12
where T'is called the synchronizing torque coefficient (often designated as P).

Substituting Eq. (7.4) into Eq. (7.2), we get

ok AP, =T 85~ 85)

The block diagram representation of the two-area system with only primary control is shown in Fig. 7.2

A positive AP,, means an increase in power flow from area 1 to 2. “This is equivalent to a load increasc in

area 1 andlor decreasing load in area 2. Therefore, the feedback from AP, has a negative sign for area 1 and
positive sign for area 2. We will now see how the system behaves for a change in the load.

)
Figure 7.1  (a) Two-area system and (b) Electrical equivalent.

7.6 Tie-Line Oscillations

(7.5)

; o~ 237

APrecz(®)

Figure 7.2 Two-area system with primary loop.

(

|

7.2.1 Change of Load in Area 1
Consider a load change of AP, in area 1. When the system has reached a steady state, both areas will have
same steady-state frequency deviations. Therefore,

Aw=Ao,= Ao, 7.6)
(or Af- Aft = Af.. Remember that in pu both Af and Aw are she same). If-we assume that the mechanical
IW.W“S are constant (which means AP, ;s constant), the tie-line and rotating masses exhibit damped oscil-
ations called synchronizing oscillations. For area 1, we can write

AP-I_MH-APU:AMI U7)
Forarea 2, we have
AP, + AP, = AwD, )
Wehave fusther
AP, = ——‘;‘?l‘” B L
AP,_,=',‘§1”’ i ‘(7.10)

Subsie ¥ : i
"iuting Eqg. (7.9) and (7.10) in Eqs. (7.7) and (7.8), respectively, we B¢

—AP, - AP, =An)(7€—+D.)

e

- We saw in t.he p-rcvious section that the system state matrix is 2 9 X 9 matrix for a two-area system. With
some simplification, we can get a fairly good idea of the effect of the system parameters on the dynamic

response. Let us make the following assumptions:
1. Neglect turbine and governor time constants,
- 2. Neglect damping constants D, and D,.
*3. Both areas are identical.
With these assumptions, the two area equations reduce to

S sy

(7.70



Apnz(i) = T

—Aw,(s)

=] . 3
Awy(s) = EE[AP-'(") ~AP, () - AP, (3]

bgiﬂld;g for AP,“(-‘)» we get
Sul . |
Awy() = —1 _‘[-N?g.(s)ﬂp,,(,)] v 7
*SREE 2H; . o3
Similar 1ywég¢t E o ] ok B
Ry Aay) = —1__[ZAR) +AR() &
TS I (RO 17 (7.74)
APy(5) = %_[Aw.(:)_— Aay(s)]
o %ﬁ[ﬁﬁ“’w -APu'(:)—ZAe;(s»] Ay
( 2RH:) {
T T
or AP 14— » (AR, () - AR, (5)]
2HS +5 | 2H+5 =
—L S % SIS
21 -AP, 7:75)
¢ AP]:(‘)': 3 7 T [Apu(5) L.(-‘)]- A PR ,. :
StRETH

The poles of the denominator determine the oscillations in AB,. We compare the dmominator__ﬁ}!l the
sandard second-order characteristic equation.

4205+ 0} =51+ 2805+ 0} R L
We can see that ¢ ‘ g
T 1 (7.77)
*=4rH
A . POFAT : ! (7.79)
iad . @:J%puor —Tf!.g—'“d,s oo
The A PE - (7.75)-
d'::‘l’mg is determined by the relative values of a@and @, and the 100 of B 7
5of Eq. (7.75) are 3 2 e &
o n=—Ca,tj0, I-8 779

ul =—atjd, . y
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‘and =0, f1-& - (7.80)

:@is called the damping factor or damping constant. @, is the natural undamped frequency of oscillations, o,
is called the damped or conditional frequency and & is called the damping ratio. We now have the following
cases:

1. When £ =1 or @= @, This condition is called “critical damping.”

2. When & = 0 or @= 0, the roots are purcly imaginary and we get purely sinusoidal oscillations for
a step change in input. In Eq. (7.74), the input is AP, (s) — AP,,(5). Therefore, for a step change i
the load, we would get sustained sinusoidal oscillations of tie-line power at a frequency of o),
From Eq. (7.76), we can see that @ = 0 when R = o, This means that there is no governor spce:j

~ ‘control.: | - ‘ St

‘3. When @< @, & <1, we get a pair of complex conjugate roots. The system is “under damped” and we
have oscillations in tie-line power flow which have a frequency @ as in Eq. (7.79). The time constant of
the system is 1/a.

4. When @> @, we have an “over damped” system. The roots are both real.

The above analysis is only approximate, but is helpful in knowing the effect of the choice of parameters
on the stability of the system. If we consider the damping constants of the load, then @ is modified as

a= #[D % }?-] 7.81)
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