IAT @ M4 questions

2 marks

- 1) If f(z)=u+iv is analytic then
 - a) Only u is harmonic.
 - b) Only v is harmonic.

CO1 L2 ANS C

- c) Both u and v are harmonic.
- d) None of the above.
- 2) If f(z)=u+iv then which of the following is true
 - a) If f(z) is analytic then u and v are orthogonal.
 - b) If u and v are orthogonal then f(z) is analytic.

CO1 L2 ANS A

- c) Both a and b are true.
- d) None of the above.
- 3) If a transformation is conformal then
 - a) Only magnitude of the angle is preserved.
 - b) Always we get the same image in both z and w plane under any given function.
 - c) Both magnitude and sense are preserved under the transformation.
 - d) All transformations are conformal.

CO2 L1 ANS C

- 4) Y=-c (a constant) under the transformation $w = z^2$ transformed in to
 - a) A parabola symmetrical about imaginary axis.
 - b) A parabola symmetrical about real axis with vertex $(-c^2, o)$
 - c) A parabola symmetrical about real axis with vertex (c^2, o)
 - d) A circle with center as origin.

CO2 L3 ANS B

- 5) The straight line parallel to y axis in the z-plane maps onto a circle with center origin and radius r in w-plane under the transformation.
 - a) $w = z^2$
 - b) $w = e^z$
 - c) $w = z + \frac{1}{z}$
 - d) None of the above.

CO2 L3 ANS B

- 6) A circle with center zero and radius r mapped in to what under the transformation $w = z + \frac{1}{z}$
 - a) Ellipse with foci $(c^2, 0)$
 - b) Ellipse with foci $(\pm 2, 0)$
 - c) Hyperbola with foci $(\pm 2, 0)$
 - d) None of the above.

CO2 L3 ANS B

- 7) A circle with center zero and radius r mapped in to what under the transformation $w = z^2$
 - a) A circle with center at a and radius r
 - b) A circle with center at 0 and radius r
 - c) A circle with center at 0 and radius r^2
 - d) A parabola.

CO2 L3 ANS C

8) The straight-line y=c in the z-plane maps onto a straight line passing through origin in w-plane under the transformation.

$$a)w = z^2$$

$$b)w = e^z$$

$$c)w = z + \frac{1}{z}CO2$$
 L3 ANS B

d)None of the above.

- 9) The harmonic property in polar form is
 - $a) \quad u_{xx} + u_{yy} = 0$
 - b) $u_{rr} + u_{\sigma\sigma} = 0$
 - c) Both a and b are correct.CO2 L1 ANS D
 - d) None of the above
- 10) Which of the following is false if $w = \frac{az+b}{cz+d}$?
 - a) Bilinear transformations are conformal if $ad bc \neq o$.
 - b) Bilinear transformations are not conformal if $ad bc \neq o$.
 - c) Bilinear transformation is called as Mobius transformation.
 - here a,b,c,d are all real or complex constantsCO2 L1 ANS B

3-mark questions

- 11) If $\emptyset = u^2 + v^2$ and f(z) = u + iv is analytic then $\emptyset_{xx} + \emptyset_{yy} = u + iv$
 - *a*) 0
 - b) $|f'(z)|^2$
 - c) $4|f'(z)|^2$ CO2 L3 ANS C
 - *d)* None of the above.
- 12) If $u = y + e^x \cos y$ is harmonic then the harmonic conjugate is
 - a) $c + e^x \cos y$
 - b) $c + e^x \cos y + x$
 - c) $c + e^x \sin y x \cos 2$ L3 ANS C

$$d)$$
 $c - e^x cosy - x$

13)
$$u = \frac{\cos 2\sigma}{r^2}$$
, $r \neq 0$ is

- a) U is Harmonic.
- b) U is not harmonic.CO2 L3 ANS A
- c) can't conclude since v is not given.
- d) None of the above
- 14) when $w = \frac{1+iz}{1-iz}$ under this Bilinear Transformation what is the image of |z| < 1.

$$a) u=0$$

b) u < 0

c)
$$u > 0$$
CO2 L3 ANS C

d)None of the above

15) Find the Bilinear Transformation which maps the points $0,1,\infty$ onto the points -5,-1,3 respectively.

a)
$$w = \frac{3z+2}{z+1}$$

b)
$$w = \frac{3z-5}{z+1}$$

c)
$$w = \frac{3z}{-1.1}$$

a)
$$w = \frac{3z+2}{z+1}$$

b) $w = \frac{3z-5}{z+1}$
c) $w = \frac{3z}{z+1}$
d) $w = \frac{3z-1}{z-2}$

CO₂ L₃ ANS B

16) If the Bilinear Transformation is $w = \frac{1-z}{z+1}$ what are the invariant points

a)
$$-1 \pm \sqrt{2}$$
 b) $-2 \pm \sqrt{2}$ c) $-1 \pm \sqrt{3}$ d) $-2 \pm \sqrt{3}$

CO2 L3 ANS A

17) Evaluate $I = \int_0^{2+i} (\overline{z})^2 dz$ along the straight Line $y = \frac{x}{2}$

a)
$$I = \frac{5}{3}(2+i)$$
 b) $I = \frac{5}{3}(2-i)$ c) $I = \frac{5}{3}(2-2i)$ d) $I = \frac{5}{3}(2+2i)$

CO2 L3 ANS B

18)Evaluate $\int_{C} |z|^{2} dz$ where c is the line joiningthe points (1,1) to (0,1)

a)
$$\frac{2}{4}$$
 b) $-\frac{4}{3}$ c) $-\frac{4i}{3}$ d) $\frac{4}{3}$

CO2 L3 ANS B

19)Evaluate $\int_C (z-z^2) dz$ where 'c' is the upper half of the |z|=1 where the angle increasing from 0 to π

a)
$$\frac{4}{3}$$
 b) $-\frac{2}{3}$ c) $\frac{2}{3}$ d) none of the above.

CO2 L3 ANS C

20)Evaluate $\int_C |z| \, dz$ in the following case where 'c' is the Left half of the circle |z| = 1 from -i to i

a) 2i b) 2c) -2i d) none of the above.

CO2 L3 ANS A

IAT @ M4 Scheme of evaluation

2 marks

1) If f(z)=u+iv is analytic then

CO1 L2 ANS C

Both u and v are harmonic.

- 2) If f(z)=u+iv then which of the following is true

 If f(z) is analytic then u and v are orthogonal.CO1 L2 ANS A
- 3) If a transformation is conformal then

Both magnitude and sense are preserved under the transformationCO2 L1 ANS C

- 4) Y=-c (a constant) under the transformation $w = z^2$ transformed in to A parabola symmetrical about real axis with vertex $(-c^2, o)$ CO2 L3 ANS B
- 5) The straight line parallel to y axis in the z-plane maps onto a circle with center origin and radius r in w-plane under the transformation.

$$w = e^z$$

CO2 L3 ANS B

6) A circle with center zero and radius r mapped in to what under the transformation $w = z + \frac{1}{z}$ Ellipse with foci $(\pm 2, 0)$

CO2 L3 ANS B

- 7) A circle with center zero and radius r mapped in to what under the transformation $w = z^2$ A circle with center at 0 and radius r^2CO2 L3 ANS C
- 8) The straight-line y=c in the z-plane maps onto a straight line passing through origin in w-plane under the transformation.

$$w = e^z$$

CO2 L3 ANS B

9) The harmonic property in polar form is None of the above

10) Which of the following is falseif $w = \frac{az+b}{cz+d}$?

Bilinear transformations are not conformal if $ad - bc \neq oCO2$ L1 ANS B

11) If
$$\emptyset = u^2 + v^2$$
 and $f(z) = u + iv$ is analytic then $\emptyset_{xx} + \emptyset_{yy} = 4|f'(z)|^2$ CO1L3 ANS C

12) If $u = y + e^x \cos y$ is harmonic then the harmonic conjugate is $c + e^x \sin y - x \text{CO1L3}$ ANS C

13)
$$u = \frac{\cos 2\sigma}{r^2}, r \neq 0$$
 is

U is Harmonic.

.CO1 L3 ANS A

14) when $w = \frac{1+iz}{1-iz}$ under this Bilinear Transformation what is the image of |z| < 1.

u > 0 CO2 L3 ANS C

15) Find the Bilinear Transformation which maps the points $0,1, \infty$ onto the points -5,-1,3 respectively.

$$w = \frac{3z-5}{z+1} \text{ CO2 L3 ANS B}$$

16) If the Bilinear Transformation is $w = \frac{1-z}{z+1}$ what are the invariant points

a)
$$-1 \pm \sqrt{2}$$
 CO2 L3 ANS A

17) Evaluate $I = \int_0^{2+i} (\overline{z})^2 dz$ along the straight Line $y = \frac{x}{2}$

b)
$$I = \frac{5}{3}(2-i)$$
CO2 L3 ANS B

18)Evaluate $\int_{C} |z|^2 dz$ where c is the line joiningthe points (1,1) to (0,1)

b)
$$-\frac{4}{3}$$
 CO2 L3 ANS B

19)Evaluate $\int_C (z-z^2) dz$ where 'c' is the upper half of the |z|=1 where the angle increasing from 0 to π

c)
$$\frac{2}{3}$$

CO₂ L₃ ANS C

20)Evaluate $\int_C |z| dz$ in the following case where 'c' is the Left half of the circle

$$|z| = 1$$
 from $-i$ to i

a) 2i CO2 L3 ANS A