USN					

Internal Assessment Test 3 – Dec. 2020

Sub:	Hydrology and Irrigation Engineering						Su	ıb Code	•	CV73/ CV73	Branch: 0		Civil	1				
Date:	16/1	16/12/2020 Duration: 60 min Max Marks: 50 Sem/Sec: VII – A &								άВ	В		OBE					
Answer all questions												MA	MARKS		RBT			
1	List the limitations of unit hydrograph. Describe the methods of base flow separation along with diagram												[.	10]	CO2	L2		
2	Write notes on canal classification.												[.	10]	CO5	L3		
3	A channel section has to be designed for the following data: Discharge, $Q = 30$ cumecs, Silt factor, $f = 1.00$, Side slope = $\frac{1}{2}$:1.Also, find the longitudinal slope.											[.	10]	CO2	L4			
Find out the coordinates of a storm hydrograph resulting from a 3 hour storm with rainfall of 3, 4.5 and 1.5cm during subsequent 3 hour intervals. The ordinates of unit hydrograph are given in the table below.											10]							
	T(h	0	3	6	9	12	15	18	21	24	27	30	33	36				
	3h - UH (m3 /s)	0	90	200	350	450	350	260	190	130	80	45	20	0			CO2	L4
Assume an initial loss of 5 mm, infiltration index of 5mm/ h and base flow of 20 cumecs.																		
5	Conv	ert th	e 4h u	nit hy	drogra	aph to	12h u	nit hy	drogra	aph us	sing S	curve	method		Į.	10]		
	T (h)	0	4	8	12	16	20	24	28	32	36	40	44				CO5	L4
	4h UH (m³/ s)	0	20	80	130	150	130	80	52	27	15	5	0					٠.

All the Best

Sign of CI Sign of CCI Sign of HOD

Varsha:S 1CR17CV072. 16/12/2020

1. -> Limitations of unit hydrograph

- * It assumes uniform rainfall. Uniformity in rainfall rarely enist
- k Min area 2km²- Max area 5000km².
- * Precipitation rainfall only.
- * catchment should not have large storage in the form of ponds, tanks & bank storages.
- In use of unit hydrographs, very accuente reproduction of runts should not be injected. Variations in the hydrographe base of as much as ±20° to & in the peak discharge by ±10° to are normally considered applicable

Varsha.s ICRITCNU72

- -> Methods of Flow separation
 - * There are 3 popular methods
- * Point A can easily be identified at the beginning of direct euroff.

 * Point D difficult to identify at the end of direct runoff.
- i) Method of Straight line method.
- * A straight line is drawn between point A and point D. to demarcate to the base flow and everynce euroff.
- * This method is the simplest of all three methods

ii). I wo - lines method

I The base from curve enisting prior to the commencement of surface sunoff is entended till it intersects the ordinate drawn at the peak P. (point E).

* This point is joined to point D' by a straight line.

* Segment AE & ED demarcate the base flow f surface euroff.

* This is widely used.

- in) Curve entension method.
 - botter depletion of the flood water, in extended bottereds, the base flow receiving cueve is entended backwards till it intersects the ordinate at the point of inflution.
- * Points A&F are goined by a smooth course.

* This is practical when groundwater contestations are significant & reach the stream quickly.

2) Canal classification

- i) Based on Source of supply
 - a) Permanent Canal x there is a continuous source of water supply.

 * Also called perennial canals

 Varsha. 5
 1021702072
 - b) Inundation + Draws it's supplies from a river only canal during the bigh stages of the river
- in) Breed on Financial Output
 - a) Productive Canal- net sevenue to the nation after full development of resigntion of the reea
 - b) Protective canal It is a relief work constructed with the idea of protecting a particular area from famine.

- () Based on Function i) Irrigation Carnal Coveries water from its source to agricultural fields
 - ii) Navigation canals. Used to transport goods
 - to carry water for generation of hydrofelectricity

 + feeds two / more canals. iii) Power Canal -
- 14) Jeeder canal-
- d) Based on boundary surface of canal

 - i) Alluvial canal encavated in alluvial soils such as will.
 ii) Non-alluvial canals in non alluvial soils eg clay, hald rock etc

1 CR17 CV072

- iii) Rigid Boundary canal riged sides & base lined canals.
- e) Based on lining provided
- bed & banks made ref natural soil.

 * writer relouters higher than 0.7 m/s are
 not tolerable

 * high seepage & conveyance water lokes ? Unlined canal

 - profus growth of agnatu weeds extends
- ii) kined Canal + living of impervious material on its bed & banks to prevent supage. Eg-concrete, brick / brunt elay.

6) Based on Discharge

A) Main Canal - takes of directly from upstream side of weil head works or dam

* no direct cultivation is peoposed,

is Branch canal - branches off from either side of main canal.

k All offtakes from main canal with head dischaege of 5 m3/s & abone are termed as beauth canals.

t dets as feeder channel for major distributaries.

major Distributary

+ All offaker from main canal / branch canal with

head discharge from 0.25 to 5 m3/s are termed

as major distributaries

Varsha 5

1001700072

iv) Minor Distributary

* All offtakes from a major distributary carrying discharge less than 0.25 cumes are turned as minor distributary.

v) Water come

small channels which cavy water from the outlets of a major / minor distributory or a beanch canal to the fields to be imigated.

"- water stud.

Minor distributary

9) Based on Canal Alignment

i) water shed canal | Ridge Canal.

of It is the dividing ridge line blue the catchment areas of 2 streams

K b/w 2 major estreame, there is a ridge line that divides the draineige area of the 2 stream

& aligned along any natural water shed. A saves the cost of construction of cross-dearnage

in) Countor Canal

* so water shed canal is not found economical in

* This canal irrigates only oneside because the area on the other side is higher.

in) side scope canal

* that is aligned at right angles to the contours

* rins prealled to natural drainage flow.

Given Q = 30 m3/5

Side slope: 0.5:1

i) Vmean =
$$\left(\frac{Qf^2}{140}\right)^{1/6} = \left(\frac{30+1^2}{140}\right)^{1/6} = 0.773 \text{ m/s}.$$

ii)
$$A = 8/v - \frac{30}{0.773} = 38.80 \text{ m}^2$$

[side slope = 0.5:1] A - BD + 0.5 D2

38.8 = BD +0.502 - (1)

iv)
$$P = 4.75\sqrt{8}$$

= $26cm_{//} \sim 6$
v) $P = B+D\sqrt{5}$
 $26 = B+D\sqrt{5} \longrightarrow (2)$
-from (1) & (2)
 $B = 26-D\sqrt{5}$. Substituting $m(1)$.
 $38.8 = (26-D\sqrt{5})D + 0.5D^{2}$
 $38.8 = 26D - D^{2}\sqrt{5} + 0.5D^{2}$
 $38.8 = 26D - 1.936D^{2}$
 $D = 1.68m_{//}$
Variable 1 CR17

$$P = B + D\sqrt{5} = B + 1.68\sqrt{5} = 26$$

$$B = 26 - 1.68\sqrt{5}$$

$$B = 22.24 M_{1}$$

$$R = \frac{5/2 * v^2}{7} = \frac{5/2}{1} * \frac{0.773^2}{1} = 1.49m$$

$$R = BD + D.5D^{2} = \frac{22.24 * 1.68 + 0.5 (1.68)^{2}}{22.24 + 1.68 (\sqrt{5})}$$

Varsha.5 1 CR 17 CV 072

R = 1'49m
80 the design is
$$0k/1$$
,
Bed slope $S = \frac{4^{5/3}}{33408\%} = \frac{1^{5/3}}{33408\%} = \frac{1}{5887.53/1}$

Scanned by TapScanner

).	Time (h)	Rainfall (cm)	фin	der. cm/hr.	If	Rainfall exces.	Varisha.S ICR (7CVD72
	0	0			WOOD .		
-	3	4 3	0.	5	1.2	1.5	
	6	45	0'	~	1.5	3	
	9	1.5	()	5	1.5	0.	
			(X) 3H KI 5		DRUZLW)	(2)	01-01-1
	T(h).	3 h- UH	DRH 1.5cm	DRH DRH	lag by	Base flow.	Storm hydrogreph x t x + z) 20
	D	O	0	gcm.	^	20 (155
	3	90	135	290	0	20	590
	6	200	300	600	290	20	1145
	9	350	575	1050	600	20	1745
	12	450	625	1350	1050	20	1895
	15	350	525	1050	1350	20	1460
		260	390	585	1050		890
	18	200		530	585	20	0 10
	21	190	285	390	570	20	785
	24	130	195		390	20	530
	0.5	80	120	240	510		
	2.7		67.5	135	240	20	3275
	30	45	0,	60	135	20	185
	33	20	30	00		20	80
			0	0	60		
	36	0	. .		ð		
					1/21/2	.5	
					Varsha	v072	
					-		

52.5		A CONTRACT NAME AND ADDRESS OF PERSONS ASSESSED.	Committee and the second second second					
5)	T(h)	4h (UH) (m3/5)	Scione	Scure (X)	Screens læg bj	Duff (D) (x-8)	12 h UH D/12*4.	
	0	0		, 0	(x)	0	0	
	4	20	0	20		20	6.667	
	8	80	20	100		(00	33.33	
	12	130	100	230	. 0	230	76.66	
	16	150	230	380	20	360	120	
	20	130	380	510	100	410	136.66	
	24	80	510	590	230	360	120	
	28	52	590	6A2.	3 80	262	87.33	
	32	27	642	669	รเก	159	53	
	36	15	669	684	590	94.	31.33	
	40	5	684	689	642	47	15.66.	
	44	0	689	689	669	20	6.663	_
			•		684			
		1	Varsha:	\$	689			
			Varsha: 1CR17CV	V F 0	689.			