

SOLUTIONS

1 a.

MODULE 1

1 b.

2a. Attribute—the particular properties that describe an entity. For example, an EMPLOYEE entity may be

described by the employee’s name, age, address, salary, and job.

Several types of attributes occur in the ER model: simple versus composite, singlevalued versus

multivalued, and stored versus derived.

Composite versus Simple (Atomic) Attributes: Composite attributes can be divided into smaller subparts,

which represent more basic attributes with independent meanings. For example, the Address attribute of the

EMPLOYEE entity can be subdivided into Street_address, City, State, and Zip,3 with the values ‘2311

Kirby’, ‘Houston’, ‘Texas’, and ‘77001.’ Attributes that are not divisible are called simple or atomic

attributes. Composite attributes can form a hierarchy; for example, Street_address can be further subdivided

into three simple component attributes: Number, Street, and Apartment_number,

Single-Valued versus Multivalued Attributes: Most attributes have a single value for a particular entity;

such attributes are called single-valued. For example, Age is a single-valued attribute of a person.

one person may not have a college degree, another person may have one, and a third person may have two

or more degrees; therefore, different people can have different numbers of values for the College_degrees

attribute. Such attributes are called multivalued. A multivalued attribute may have lower and upper bounds

to constrain the number of values allowed for each individual entity.

Stored versus Derived Attributes: In some cases, two (or more) attribute values are related—for example,

the Age and Birth_date attributes of a person. For a particular person entity, the value of Age can be

determined from the current (today’s) date and the value of that person’s Birth_date. The Age attribute is

hence called a derived attribute and is said to be derivable from the Birth_date attribute, which is called a

stored attribute.

2b.

3a.

MODULE 2

Ordering of Tuples: A relation is a set of tuples; hence, there is no order associated with them. That is, it

makes no sense to refer to, for example, the 5th tuple in a relation. When a relation is depicted as a table, the

tuples are necessarily listed in some order, of course, but you should attach no significance to that order.

Similarly, when tuples are represented on a storage device, they must be organized in some fashion, and it

may be advantageous, from a performance standpoint, to organize them in a way that depends upon their
content.

Ordering of Attributes: A tuple is best viewed as a mapping from its attributes (i.e., the names we give to

the roles played by the values comprising the tuple) to the corresponding values. Hence, the order in which

the attributes are listed in a table is irrelevant.

The Null value: used for don't know, not applicable.

 Interpretation of a Relation: Each relation can be viewed as a predicate and each tuple in that relation

can be viewed as an assertion for which that predicate is satisfied (i.e., has value true) for the combination

of values in it. In other words, each tuple represents a fact. Example (see Figure 5.1): The first tuple listed

means: There exists a student having name Benjamin Bayer, having SSN 305-61-2435, having age 19, etc.

Keep in mind that some relations represent facts about entities (e.g., students) whereas others represent facts

about relationships (between entities). (e.g., students and course sections).The closed world assumption

states that the only true facts about the miniworld are those represented by whatever tuples currently

populate the database.

3 b.

4 a. Step 1: For each regular (strong) entity type E in the ER schema, create a relation R that includes all the

simple attributes of E.

Step 2: For each regular (strong) entity type E in the ER schema, create a relation R that includes all the

simple attributes of E.

Step 3: For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that
correspond to the entity types participating in R. Choose one of the relations, say S, and include the primary

key of T as a foreign key in S. Include all the simple attributes of R as attributes of S.

Step 4: For each regular binary 1:N relationship type R identify the relation (N) relation S. Include the

primary key of T as a foreign key of S. Simple attributes of R map to attributes of S.

Step 5: For each binary M:N relationship type R, create a relation S. Include the primary keys of

participant relations as foreign keys in S. Their combination will be the primary key for S. Simple attributes

of R become attributes of S.

Step 6: For each multi-valued attribute A, create a new relation R. This relation will include an attribute

corresponding to A, plus the primary key K of the parent relation (entity type or relationship type) as a

foreign key in R. The primary key of R is the combination of A and K.

Step 7: For each n-ary relationship type R, where n>2, create a new relation S to represent R. Include the

primary keys of the relations participating in R as foreign keys in S. Simple attributes of R map to attributes
of S. The primary key of S is a combination of all the foreign keys that reference the participants that have

cardinality constraint > 1.

4b. CREATE command is used for table creation.

The basic constraints that can be specified when you create a table in SQL are:

 Not Null

 Unique

 Default

 Primary Key

 Foreign Key

 Check

Not Null: By default, a column can hold NULL values. If you do not want a column to have a NULL value,

then you need to define such constraint on this column specifying that NULL is now not allowed for that

column.

Unique: The UNIQUE Constraint prevents two records from having identical values in a particular column.

Default: The DEFAULT constraint provides a default value to a column when the INSERT INTO statement

does not provide a specific value.

Primary Key: A primary key is a single field or combination of fields that uniquely identify a record. The

fields that are part of the primary key cannot contain a NULL value and must be Unique. Each table should

have a primary key, and each table can have only ONE primary key.

Foreign Key: A foreign key is a key used to link two tables together. Foreign Key is a column or a

combination of columns whose values match a Primary Key of another table. The relationship between 2

tables matches the Primary Key in one of the tables with a Foreign Key in the second table.

Example:

CREATE TABLE EMPLOYEE

(

SSN NUMBER(10) PRIMARY KEY,
NAME VARCHAR(10) NOT NULL,

PHONE NUMBER(10) UNIQUE,

AGE NUMBER(2) CHECK AGE>16,

SALARY NUMBER(5) DEFAULT 10000,

DEPTNO NUMBER(2) REFERENCES DEPARTMENT(DNO)

)

5a.

MODULE 3

STAFFORD_PROJS ← σPlocation=‘Stafford’(PROJECT)

CONTR_DEPTS ← (STAFFORD_PROJS Dnum=DnumberDEPARTMENT)

PROJ_DEPT_MGRS ← (CONTR_DEPTS Mgr_ssn=SsnEMPLOYEE)

RESULT ← πPnumber, Dnum, Lname, Address, Bdate(PROJ_DEPT_MGRS)

5b.

5c.

5d. deptno ← πDnum(σDname=’Research’(DEPARTMENT))
DEPT5_PROJS ← ρ(Pno)(πPnumber(σDnum=deptno(PROJECT)))

EMP_PROJ ← ρ(Ssn, Pno)(πEssn, Pno(WORKS_ON))

RESULT_EMP_SSNS ← EMP_PROJ ÷ DEPT5_PROJS

RESULT ← πLname, Fname(RESULT_EMP_SSNS * EMPLOYEE)

6a. Database stored procedures and SQL/PSM

 Persistent procedures/functions (modules) are stored locally and executed by the database

server. As opposed to execution by clients.

 Advantages: If the procedure is needed by many applications, it can be invoked by

 any of them (thus reduce duplications)

 Execution by the server reduces communication costs

 Enhance the modeling power of views

 Disadvantages: Every DBMS has its own syntax and this can make the system less
portable

A stored procedure EXAMPLE

CREATE PROCEDURE procedure-name (params)

local-declarations

procedure-body;

A stored function

CREATE FUNCTION fun-name (params)

RETRUNS return-type

local-declarations function-body;

Calling a procedure or function: CALL procedure-name/fun-name (arguments);

E.g.,

CREATE FUNCTION DEPT_SIZE (IN deptno INTEGER)

RETURNS VARCHAR[7]

DECLARE TOT_EMPS INTEGER;

SELECT COUNT (*) INTO TOT_EMPS

FROM SELECT EMPLOYEE

WHERE DNO = deptno;
IF TOT_EMPS > 100

 THEN RETURN ―HUGE

ELSEIF TOT_EMPS > 50

 THEN RETURN ―LARGE

ELSEIF TOT_EMPS > 30

 THEN RETURN ―MEDIUM

ELSE RETURN SMALL

ENDIF

6b.

Initially, data-intensive applications were combined into a single tier, including the DBMS, application

logic, and user interface, a" illustrated in Figure 7.5. The application typically ran on a mainframe, and users

accessed it through dumb teT'minals that could perform only data input and display. This approach ha..s the

benefit of being easily maintained by a central administrator.
Single-tier architectures have a,n important drawback: Users expect graphical interfaces that require much

more computational power than simple dumb terminals. Centralized computation of the graphical displays

of such interfaces requires much more computational power than a single server hclS available, and thus

single-tier architectures do not scale to thousands of users. The commoditization of the PC and the

availability of cheap client computers led to the developlnent of the two-tier architecture. Two-tier

architectures, often also referred to a<; client-server architectures, consist of a client computer and a server

computer, which interact through a well-defined protocol. What part of the functionality the client

implements, and what part is left to the server, can vary. In the traditional clientserver architecture, the client

implements just the graphical user interface, and the server. implements both the business logic and the data

management; such clients are often called thin clients, and this architecture is illustra,ted in Figure 7.6

 Compared to the single-tier architecture, two-tier architectures physically separate the user interface from

the data management layer. To implement twotier architectures, we can no longer have dumb terminals on
the client side; we require computers that run sophisticated presentation code (and possibly, application

logic).

7a.

MODULE 4

GUIDELINE 1: Design a relation schema so that it is easy to explain its meaning. Do not combine attributes

from multiple entity types and relationship types into a single relation. Intuitively, if a relation schema

corresponds to one entity type or one relationship type, the meaning tends to be clear.

GUIDELINE 2: Design the base relation schemas so that no insertion, deletion, or modification anomalies

are present in the relations. If any anomalies are present, note them clearly and make sure that the programs

that update the database will operate correctly.

GUIDELINE 3: As far as possible, avoid placing attributes in a base relation whose values may frequently

be null. If nulls are unavoidable, make sure that they apply in exceptional cases only and do not apply to a

majority of tuples in the relation.

Having too many Null values can be waste space at the storage level and may also lead to problems with

understanding the meaning of the attributes and with specifying JOIN operations at the logical level.

Another problem with nulls is how to account for them when aggregate operations such as COUNT or SUM

are applied. Moreover, nulls can have multiple interpretations.

GUIDELINE 4: Design relation schemas so that they can be JOINed with equality conditions on attributes
that are either primary keys or foreign keys in a way that guarantees that no spurious tuples are generated.

Do not have relations that contain matching attributes other than foreign key-primary key combinations. If

such relations are unavoidable, do not join them on such attributes, because the join may produce spurious

tuples.

7b. Normalization:
 The process of decomposing unsatisfactory "bad" relations by breaking up their attributes

into smaller relations

 Normal form:
 Condition using keys and FDs of a relation to certify whether a relation schema is in a

particular normal form

First Normal Form (1NF)
First normal form is now considered to be part of the formal definition of a relation; historically, it was

defined to disallow multivalued attributes, composite attributes, and their combinations. It states that the

domains of attributes must include only atomic (simple, indivisible) values and that the value of any

attribute in a tuple must be a single value from the domain of that attribute.

Practical Rule: "Eliminate Repeating Groups," i.e., make a separate table for each set of related attributes,

and give each table a primary key.

Formal Definition:

A relation is in first normal form (1NF) if and only if all underlying simple domains contain atomic values

only.

Second Normal Form (2NF)
Second normal form is based on the concept of fully functional dependency. A functional X ->Y is a fully

functional dependency is removal of any attribute A from X means that the dependency does not hold any

more. A relation schema is in 2NF if every nonprime attribute in relation is fully functionally dependent on
the primary key of the relation. It also can be restated as: a relation schema is in 2NF if every nonprime

attribute in relation is not partially dependent on any key of the relation.

Practical Rule:

"Eliminate Redundant Data," i.e., if an attribute depends on only part of a multivalued key, remove it to a

separate table.

Formal Definition:

A relation is in second normal form (2NF) if and only if it is in 1NF and every nonkey attribute is fully

dependent on the primary key.

Practical Rule: "Eliminate Columns not Dependent on Key," i.e., if attributes do not contribute to a

description of a key, remove them to a separate table.
Formal Definition:

A relation is in third normal form (3NF) if and only if it is in 2NF and every nonkey attribute is

nontransitively dependent on the primary key.

Third Normal Form (3NF)

Third normal form is based on the concept of transitive dependency. A functional dependency X Y in a

relation is a transitive dependency if there is a set of attributes Z that is not a subset of any key of the

relation, and both X ->Z and Z -> Y hold. In other words, a relation is in 3NF if,

whenever a functional dependency X-> A holds in the relation, either

(a) X is a superkey of the relation,

or (b) A is a prime attribute of the relation.
Practical Rule: "Eliminate Columns not Dependent on Key," i.e., if attributes do not contribute to a

description of a key, remove them to a separate table.

Formal Definition:

A relation is in third normal form (3NF) if and only if it is in 2NF and every nonkey attribute is

nontransitively dependent on the primary key.

8a A set of FDs is minimal if it satisfies the following conditions: 1. Every dependency in F has a single

attribute for its RHS. 2. We cannot remove any dependency from F and have a set of dependencies that is

equivalent to F. A3. We cannot replace any dependency X A, where Y is ain F with a dependency Y
proper-subset-of X and still have a set of dependencies that is equivalent to F.

Algorithm 15.2. Finding a Minimal Cover F for a Set of Functional Dependencies E »

Input: A set of functional dependencies E.

 1. Set F:=E.

2. Replace each functional dependency X → {A1, A2, ..., An} in F by the n functional dependencies X

→A1, X →A2, ..., X → An.
 3. For each functional dependency X → A in F for each attribute B that is an element of X if { {F – {X →

A} } ∪ { (X – {B}) → A} } is equivalent to F then replace X → A with (X – {B}) → A in F. (* The above

constitutes a removal of the extraneous attribute B from X *)

4. For each remaining functional dependency X → A in F if {F – {X → A} } is equivalent to F, then remove

X → A from F. (* The above constitutes a removal of the redundant dependency A from F *)X

given set of FDs E : {B → A, D → A, AB → D}.We have to find the minimum cover of E.

 ■ All above dependencies are in canonical form; so we have completed step 1 of Algorithm 10.2 and can

proceed to step 2.

In step 2 we need to determine if AB → D has any redundant attribute on the left-hand side; that is, can it be

replaced by B → D or A → D? ■ Since B → A, by augmenting with B on both sides (IR2), we have BB →

AB, or B → AB (i). However, AB → D as given (ii).
■ Hence by the transitive rule (IR3), we get from (i) and (ii), B → D. Hence AB → D may be replaced by B

→ D.

 ■ We now have a set equivalent to original E , say E′ : {B → A, D → A, B → D}. No further reduction is

possible in step 2 since all FDs have a single attribute on the left-hand side.

 ■ In step 3 we look for a redundant FD in E′. By using the transitive rule on B → D and D → A, we derive

B → A. Hence B → A is redundant in E’ and can be eliminated.

 ■ Hence the minimum cover of E is {B → D, D → A}

8b.

9a.

MODULE 5

Several problems can occur when concurrent transactions execute in an uncontrolled manner.

Consider two transactions below:

9b. Transactions should possess several properties, often called the ACID properties
The following are the ACID properties:

■ Atomicity. A transaction is an atomic unit of processing; it should either be performed in its entirety or

not performed at all.

■ Consistency preservation. A transaction should be consistency preserving, meaning that if it is

completely executed from beginning to end without interference from other transactions, it should take the

database from one consistent state to another.
■ Isolation. A transaction should appear as though it is being executed in isolation from other transactions,

even though many transactions are executing concurrently. That is, the execution of a transaction should

not be interfered with by any other transactions executing concurrently.

■ Durability or permanency. The changes applied to the database by a committed transaction must persist

in the database. These changes must not be lost because of any failure.

10a. Deadlock occurs when each transaction T in a set of two or more transactions is waiting for some item that

is locked by some other transaction T′ in the set. Hence, each transaction in the set is in a waiting queue,
waiting for one of the other transactions in the set to release the lock on an item.

Deadlock Prevention Protocols:
One way to prevent deadlock is to use a deadlock-prevention protocol.

One deadlock prevention protocol, which is used in conservative two-phase locking, requires that every

transaction lock all the items it needs in advance.

A second protocol, which also limits concurrency, involves ordering all the items in the database and

making sure that a transaction that needs several items will lock them according to that order.

Some of these techniques use the concept of transaction timestamp TS(T), which is a unique identifier

assigned to each transaction.

Two schemes that prevent deadlock are called wait-die and wound-wait.

 Wait-die. If TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait; otherwise (Ti younger than Tj)

abort Ti (Ti dies) and restart it later with the same timestamp.

 ■ Wound-wait. If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds Tj) and restart it later with

the same timestamp; otherwise (Ti younger than Tj) Ti is allowed to wait.

In wait-die, an older transaction is allowed to wait for a younger transaction, whereas a younger transaction
requesting an item held by an older transaction is aborted and restarted. Wound-wait does the opposite.

Another group of protocols that prevent deadlock do not require timestamps. These include the no waiting

(NW) and cautious waiting (CW) algorithms. In the no waiting algorithm, if a transaction is unable to

obtain a lock, it is immediately aborted and then restarted after a certain time delay without checking

whether a deadlock will actually occur or not. Suppose that transaction Ti tries to lock an item X but is not

able to do so because X is locked by some other transaction Tj with a conflicting lock. The cautious waiting

rule is as follows: Cautious waiting: If Tj is not blocked (not waiting for some other locked item), then Ti is

blocked and allowed to wait; otherwise abort Ti.

Deadlock Detection:
A simple way to detect a state of deadlock is for the system to construct and maintain a wait-for graph. One

node is created in the wait-for graph for each transaction that is currently executing. Whenever a transaction

Ti is waiting to lock an item X that is currently locked by a transaction Tj, a directed edge (Ti -> Tj) is
created in the wait-for graph. When Tj releases the lock(s) on the items that Ti was waiting for, the directed

edge is dropped from the wait-for graph. We have a state of deadlock if and only if the wait-for graph has a

cycle. Another simple scheme to deal with deadlock is the use of timeouts. In this method, if a transaction

waits for a period longer than a system-defined timeout period, the system assumes that the transaction may

be deadlocked and aborts it.

Starvation:
 Starvation occurs when a particular transaction consistently waits or restarted and never gets a chance to

proceed further.

 In a deadlock resolution it is possible that the same transaction may consistently be selected as victim and

rolled-back.

 This limitation is inherent in all priority based scheduling mechanisms.

In Wound-Wait scheme a younger transaction may always be wounded (aborted) by a long running older

transaction which may create starvation.

10b. Shadow paging considers the database to be made up of a number of fixed size disk pages (or disk blocks)—
say, n—for recovery purposes. A directory with n entries is constructed, where the ith entry points to the ith

database page on disk.

The directory is kept in main memory if it is not too large, and all references—reads or writes—to database

pages on disk go through it. When a transaction begins executing, the current directory—whose entries

point to the most recent or current database pages on disk—is copied into a shadow directory. The shadow

directory is then saved on disk while the current directory is used by the transaction.

During transaction execution, the shadow directory is never modified. When a write_item operation is

performed, a new copy of the modified database page is created, but the old copy of that page is not

overwritten. Instead, the new page is written elsewhere—on some previously unused disk block. The current

directory entry is modified to point to the new disk block, whereas the shadow directory is not modified and

continues to point to the old unmodified disk block.

