[image: D:\Course File Subjects\SA\SA Poonam\SA_may2018.jpg]
1a> Define SA and factors that influence SA.
The software architecture of a program or computing system is the structure or structures of the system, which comprise software elements, the externally visible properties of those elements, and the relationships among them. Software architecture is a result of technical, business and social influences. Its existence in turn affects the technical, business and social environments that subsequently influence future architectures. We call this cycle of influences, from environment t the architecture and back t the environment, the Architecture Business Cycle (ABC)
[image: Image result for ARCHITECTURES ARE INFLUENCED BY SYSTEM STAKEHOLDERS]
 Many people and organizations interested in the construction of a software system are referred t as stakeholders. E.g. customers, end users, developers, project manager etc. Figure below shows the architect receiving helpful stakeholder “suggestions”.
 Having an acceptable system involves properties such as performance, reliability, availability, platform compatibility, memory utilization, network usage, security, modifiability, usability, and interoperability with other systems as well as behavior. The underlying problem, of course, is that each stakeholder has different concerns and goals, some of which may be contradictory. The reality is that the architect often has t fill in the blanks and mediate the conflicts.
 ARCHITECTURES ARE INFLUENCED BY THE DEVELOPING ORGANIZATIONS. Architecture is influenced by the structure or nature of the development organization. There are three classes of influence that come from the developing organizations: immediate business, long-term business and organizational structure. An organization may have an immediate business investment in certain assets, such as existing architectures and the products based on them. An organization may wish t make a long-term business investment in an infrastructure t pursue strategic goals and may review the proposed system as one means of financing and extending that infrastructure. The organizational structure can shape the software architecture.
 ARCHITECTURES ARE INFLUENCED BY THE BACKGROUND AND EXPERIENCE OF THE ARCHITECTS. If the architects for a system have had good results using a particular architectural approach, such as distributed objects or implicit invocation, chances are that they will try that same approach on a new development effort. Conversely, if their prior experience with this approach was disastrous, the architects may be reluctant t try it again. Architectural choices may als come from an architect’s education and training, exposure t successful architectural patterns, or exposure t systems that have worked particularly poorly or particularly well. The architects may als wish t experiment with an architectural pattern or technique learned from a book or a course.

 ARCHITECTURES ARE INFLUENCED BY THE TECHNICAL ENVIRONMENT A special case of the architect’s background and experience is reflected by the technical environment. The environment that is current when an architecture is designed will influence that architecture. It might include standard industry practices or software engineering prevalent in the architect’s professional community.

[image: Image result for ARCHITECTURES ARE INFLUENCED BY SYSTEM STAKEHOLDERS]
The influences on the architect, and hence on the architecture, are shown in Figure Influences on an architecture come from a wide variety of sources. Some are only implied, while others are explicitly in conflict. Architects need t know and understand the nature, source, and priority of constraints on the project as early as possible. Therefore, they must identify and actively engage the stakeholders t solicit their needs and expectations. Architects are influenced by the requirements for the product as derived from its stakeholders, the structure and goals of the developing organization, the available technical environment, and their own background and experience.
1b> Importance of SA and its uses
Software process is the term given t the organization, ritualization, and management of software development activities. The various activities involved in creating software architecture are: Creating the business case for the system It is an important step in creating and constraining any future requirements. How much should the product cost? What is its targeted market? What is its targeted time t market? Will it need t interface with other systems? Are there system limitations that it must work within? These are all the questions that must involve the system’s architects. They cannot be decided solely by an architect, but if an architect is not consulted in the creation of the business case, it may be impossible t achieve the business goals.
 Understanding the requirements There are a variety of techniques for eliciting requirements from the stakeholders. For ex: Object oriented analysis uses scenarios, or “use cases” t embody requirements. Safety-critical systems use more rigorous approaches, such as finite-state-machine models or formal specification languages. Another technique that helps us understand requirements is the creation of prototypes. Regardless of the technique used t elicit the requirements, the desired qualities of the system t be constructed determine the shape of its structure.
 Creating or selecting the architecture In the landmark book The Mythical Man-Month, Fred Brooks argues forcefully and eloquently that conceptual integrity is the key t sound system design and that conceptual integrity can only be had by a small number of minds coming together t design the system's architecture.
 Documenting and communicating the architecture For the architecture t be effective as the backbone of the project’s design, it must be communicated clearly and unambiguously t all of the stakeholders. Developers must understand the work assignments it requires of them, testers must understand the task structure it imposes on them, management must understand the scheduling implications it suggests, and s forth.
 Analyzing or evaluating the architecture Choosing among multiple competing designs in a rational way is one of the architect’s greatest challenges. Evaluating an architecture for the qualities that it supports is essential t ensuring that the system constructed from that architecture satisfies its stakeholders needs. Use scenario-based techniques or architecture tradeoff analysis method (ATAM) or cost benefit analysis method (CBAM).
 Implementing the system based on the architecture This activity is concerned with keeping the developers faithful t the structures and interaction protocols constrained by the architecture. Having an explicit and well-communicated architecture is the first step toward ensuring architectural conformance. Ensuring that the implementation conforms t the architecture Finally, when an architecture is created and used, it goes int a maintenance phase. Constant vigilance is required t ensure that the actual architecture and its representation remain t each other during this phase.
2a> Short note on Layered Systems
 A layered system is organized hierarchically
 Each layer provides service t the layer above it.
Inner layers are hidden from all except the adjacent layers.
Connectors are defined by the protocols that determine how layers interact each other.
Goal is t achieve qualities of modifiability portability.
[image: Image result for layered system in software architecture]
Examples:
Layered communication protocol
Operating systems
Database systems
Advantages:
 They support designs based on increasing levels abstraction.
Allows implementers t partition a complex problem int a sequence of incremental steps.
They support enhancement
They support reuse.

Disadvantages:
 Not easily all systems can be structures in a layered fashion.
Performance may require closer coupling between logically high-level functions and their lower-level implementations.
Difficulty t mapping existing protocols int the IS framework as many of those protocols bridge several layers.
 Layer bridging: functions is one layer may talk t other than its immediate neighbor.
2b>Pipes & Filters
Each components has set of inputs and set of outputs
 A component reads streams of data on its input and produces streams of data on its output.
 By applying local transformation t the input streams and computing incrementally, s that output begins before input is consumed. Hence, components are termed as filters.
 Connectors of this style serve as conducts for the streams transmitting outputs of one filter t inputs of another. Hence, connectors are termed pipes.

Conditions (invariants) of this style are:
1. Filters must be independent entities.
2. They should not share state with other filter
3. Filters d not know the identity of their upstream and downstream filters.
4. Specification might restrict what appears on input pipes and the result that appears on the output pipes.
5. Correctness of the output of a pipe-and-filter network should not depend on the order in which filter perform their processing.

Common specialization of this style includes :
1. Pipelines: Restrict the topologies t linear sequences of filters.
2. Bounded pipes: Restrict the amount of data that can reside on pipe.
3. Typed pipes: Requires that the data passed between tw filters have a well-defined type.
Example 1:
Best known example of pipe-and-filter architecture are programs written in UNIX-SHELL. Unix supports this style by providing a notation for connecting components [Unix process] and by providing run-time mechanisms for implementing pipes.
Example 2:
Traditionally compilers have been viewed as pipeline systems. Stages in the pipeline include lexical analysis parsing, semantic analysis and code generation other examples of this type are. Signal processing domains Parallel processing Functional processing Distributed systems.

Advantages:
They allow the designer t understand the overall input/output behavior of a system as a simple composition of the behavior of the individual filters. They support reuse: Any tw filters can be hooked together if they agree on data. Systems are easy t maintain and enhance: New filters can be added t exciting systems. They permit certain kinds of specialized analysis eg: deadlock, throughput They support concurrent execution.

Disadvantages:
 They lead t a batch organization of processing. Filters are independent even though they process data incrementally. Not good at handling interactive applications When incremental display updates are required. They may be hampered by having t maintain correspondences between tw separate but related streams. Lowest common denominator on data transmission. This can lead t both loss of performance and t increased complexity in writing the filters.
2c>KWIC

Aims: – T d emonstrate key features of four architectural styles. – T identify relative strengths and weaknesses of these four architectural styles.
 First proposed by David Parnas as an example t demonstrate information hiding - key idea b ehind OO. The problem: “The KWIC system index system accepts an ordered set of lines, each line is an ordered set of words, and each word is an ordered set of characters. Any line may be “circularly shifted ” by repeatedly removing the first word and appending it at the end of the line. The KWIC index system outputs a listing of all circular shifts of all lines in alphabetical ord er.” • Widely used in Computer Science: – Unix man page permutated index – Keyword in context indexes for libraries
KWIC Example Input: Pattern-Oriented Software Architecture Software Architecture Introducing Design Patterns Output (assuming Pattern-Oriented treated as one word): Architecture Software Architecture Pattern-Oriented Software Design Patterns Introducing Introducing Design Patterns Patterns Introducing Design Pattern-Oriented Software Architecture Software Architecture Software Architecture Pattern-Oriented • Can now quickly search for titles that contain phrases such as “Software Architecture” or “Design Pattern”
[image: Image result for kwic in software architecture]

[image: Image result for kwic in software architecture]

3a> Security QA
Security is a measure of the system's ability t resist unauthorized usage while still providing its services t legitimate users. An attempt t breach security is called an attack[1] and can take a number of forms. It may be an unauthorized attempt t access data or services or t modify data, or it may be intended t deny services t legitimate users.
Attacks, often occasions for wide media coverage, may range from theft of money by electronic transfer t modification of sensitive data, from theft of credit card numbers t destruction of files on computer systems, or t denial-of-service attacks carried out by worms or viruses. Still, the elements of a security general scenari are the same as the elements of our other general scenarios?a stimulus and its source, an environment, the target under attack, the desired response of the system, and the measure of this response.
Security can be characterized as a system providing nonrepudiation, confidentiality, integrity, assurance, availability, and auditing. For each term, we provide a definition and an example.
1. Nonrepudiation is the property that a transaction (access t or modification of data or services) cannot be denied by any of the parties t it. This means you cannot deny that you ordered that item over the Internet if, in fact, you did.
2. Confidentiality is the property that data or services are protected from unauthorized access. This means that a hacker cannot access your income tax returns on a government computer.
3. Integrity is the property that data or services are being delivered as intended. This means that your grade has not been changed since your instructor assigned it.
4. Assurance is the property that the parties t a transaction are wh they purport t be. This means that, when a customer sends a credit card number t an Internet merchant, the merchant is wh the customer thinks they are.
5. Availability is the property that the system will be available for legitimate use. This means that a denial-of-service attack won't prevent your ordering this book.
6. Auditing is the property that the system tracks activities within it at levels sufficient t reconstruct them. This means that, if you transfer money out of one account t another account, in Switzerland, the system will maintain a record of that transfer.
Each of these security categories gives rise t a collection of general scenarios.
Security General Scenarios
The portions of a security general scenari are given below. Figure 4.6 presents an example. A correctly identified individual tries t modify system data from an external site; system maintains an audit trail and the correct data is restored within one day.
· Source of stimulus. The source of the attack may be either a human or another system. It may have been previously identified (either correctly or incorrectly) or may be currently unknown. If the source of the attack is highly motivated (say politically motivated), then defensive measures such as "We know wh you are and will prosecute you" are not likely t be effective; in such cases the motivation of the user may be important. If the source has access t vast resources (such as a government), then defensive measures are very difficult. The attack itself is unauthorized access, modification, or denial of service.
The difficulty with security is allowing access t legitimate users and determining legitimacy. If the only goal were t prevent access t a system, disallowing all access would be an effective defensive measure.

[image: Image result for security quality attribute]
· Stimulus. The stimulus is an attack or an attempt t break security. We characterize this as an unauthorized person or system trying t display information, change and/or delete information, access services of the system, or reduce availability of system services. In Figure 4.6, the stimulus is an attempt t modify data.
· Artifact. The target of the attack can be either the services of the system or the data within it. In our example, the target is data within the system.
· Environment. The attack can come when the system is either online or offline, either connected t or disconnected from a network, either behind a firewall or open t the network.
· Response. Using services without authorization or preventing legitimate users from using services is a different goal from seeing sensitive data or modifying it. Thus, the system must authorize legitimate users and grant them access t data and services, at the same time rejecting unauthorized users, denying them access, and reporting unauthorized access. Not only does the system need t provide access t legitimate users, but it needs t support the granting or withdrawing of access. One technique t prevent attacks is t cause fear of punishment by maintaining an audit trail of modifications or attempted accesses. An audit trail is als useful in correcting from a successful attack. In Figure 4.6, an audit trail is maintained.
· Response measure. Measures of a system's response include the difficulty of mounting various attacks and the difficulty of recovering from and surviving attacks. In our example, the audit trail allows the accounts from which money was embezzled t be restored t their original state. Of course, the embezzler still has the money, and he must be tracked down and the money regained, but this is outside of the realm of the computer system.

3b> Availability QA
Availability is concerned with system failure and its associated consequences. A system failure occurs when the system n longer delivers a service consistent with its specification. Such a failure is observable by the system's users?either humans or other systems. An example of an availability general scenari appeared in Figure 4.3.
Among the areas of concern are how system failure is detected, how frequently system failure may occur, what happens when a failure occurs, how long a system is allowed t be out of operation, when failures may occur safely, how failures can be prevented, and what kinds of notifications are required when a failure occurs.
We need t differentiate between failures and faults. A fault may become a failure if not corrected or masked. That is, a failure is observable by the system's user and a fault is not. When a fault does become observable, it becomes a failure. For example, a fault can be choosing the wrong algorithm for a computation, resulting in a miscalculation that causes the system t fail.
Once a system fails, an important related concept becomes the time it takes t repair it. Since a system failure is observable by users, the time t repair is the time until the failure is n longer observable. This may be a brief delay in the response time or it may be the time it takes someone t fly t a remote location in the mountains of Peru t repair a piece of mining machinery (this example was given by a person wh was responsible for repairing the software in a mining machine engine.).
The distinction between faults and failures allows discussion of automatic repair strategies. That is, if code containing a fault is executed but the system is able t recover from the fault without it being observable, there is n failure.
The availability of a system is the probability that it will be operational when it is needed. This is typically defined as
[image: graphics/04equ01.gif]
From this come terms like 99.9% availability, or a 0.1% probability that the system will not be operational when needed.
Scheduled downtimes (i.e., out of service) are not usually considered when calculating availability, since the system is "not needed" by definition. This leads t situations where the system is down and users are waiting for it, but the downtime is scheduled and s is not counted against any availability requirements.
Availability General Scenarios
From these considerations we can see the portions of an availability scenario, shown in Figure 4.2.
· Source of stimulus. We differentiate between internal and external indications of faults or failure since the desired system response may be different. In our example, the unexpected message arrives from outside the system.
· Stimulus. A fault of one of the following classes occurs.
- omission. A component fails t respond t an input.

- crash. The component repeatedly suffers omission faults.

- timing. A component responds but the response is early or late.

- response. A component responds with an incorrect value.

- In Figure 4.3, the stimulus is that an unanticipated message arrives. This is an example of a timing fault. The component that generated the message did s at a different time than expected.
· Artifact. This specifies the resource that is required t be highly available, such as a processor, communication channel, process, or storage.
· Environment. The state of the system when the fault or failure occurs may als affect the desired system response. For example, if the system has already seen some faults and is operating in other than normal mode, it may be desirable t shut it down totally. However, if this is the first fault observed, some degradation of response time or function may be preferred. In our example, the system is operating normally.
· Response. There are a number of possible reactions t a system failure. These include logging the failure, notifying selected users or other systems, switching t a degraded mode with either less capacity or less function, shutting down external systems, or becoming unavailable during repair. In our example, the system should notify the operator of the unexpected message and continue t operate normally.
· Response measure. The response measure can specify an availability percentage, or it can specify a time t repair, times during which the system must be available, or the duration for which the system must be available. In Figure 4.3, there is n downtime as a result of the unexpected message.
[image: Image result for availability quality attribute]
4a> From Mud t Structure
From Mud t Structure. The category includes the Layers pattern, the Pipes and Filters pattern and the Blackboard pattern. hree architectural patterns that provide high level system subdivisions of different kinds:
1. The Layers pattern helps t structure applications that can be decomposed int groups of subtasks in which each group of subtasks is at a particular level of abstraction.
2. The Pipes and Filters pattern provides a structure for systems that process a stream of data. Each processing step is encapsulated in a filter component. Data is passed through pipes between adjacent filters. Recombining filters allows you t build families of related systems.
3. The Blackboard pattern is useful for problems for which n deterministic solution strategies are known. In Blackboard several specialized subsystems assemble their knowledge t build a possibly partial or approximate solution.
LAYERS The layers architectural pattern helps t structure applications that can be decomposed int groups of subtasks in which each group of subtasks is at a particular level of abstraction.

Example: Networking protocols are best example of layered architectures. Such a protocol consists of a set of rules and conventions that describes how computer programmer communicates across machine boundaries. The format, contacts and meaning of all messages are defined. The protocol specifies agreements at a variety of abstraction levels, ranging from the details of bit transmission t high level abstraction logic. Therefore the designers use secured sub protocols and arrange them in layers. Each layer deals with a specific aspect of communication and users the services of the next lower layer. (see diagram & explain more)

Context: a large system that requires decomposition.
Problem: THE SYSTEM WE ARE BUILDING IS DIVIDED BY MIX OF LOW AND HIGH LEVEL ISSUES, WHERE HIGH-LEVEL OPERATIONS RELY ON THE LOWER-LEVEL ONES. FOR EX, HIGH-LEVEL WILL BE INTERACTIVE T USER AND LOW-LEVEL WILL BE CONCERNED WITH HARDWARE IMPLEMENTATION.
[image: Image result for osi reference model]
In such a case, we need t balance the following forces: Late source code changes should not ripple through the systems. They should be confined t one component and not affect others. Interfaces should be stable, and may even be impressed by a standards body. Parts of the system should be exchangeable (i.e, a particular layer can be changed). It may be necessary t build other systems at a later date with the same low-level issues as the system you are currently designing. Similar responsibilities should be grouped t help understandability and maintainability. There is n ‘standard’ component granularity. Complex components need further decomposition. Crossing component boundaries may impede performance, for example when a substantial amount of data must be transferred over several boundaries. The system will be built by a team of programmers, and works has t be subdivided along clear boundaries.

Solution: Structure your system int an appropriate number of layers and place them on top of each other. Lowest layer is called 1 (base of our system), the highest is called layer N. i.e, Layer 1, ……. Layer J-1, Layer J, ….. Layer N. Most of the services that layer J Provides are composed of services provided by layer J-1. In other words, the services of each layer implement a strategy for combining the services of the layer below in a meaningful way. In addition, layer J’s services may depend on other services in layer J.

PIPES AND FILTERS The pipes and filter’s architectural pattern provides a structure for systems that process a stream of data. Each processing step is encapsulated in a filter component. Data is passed through pipes between adjacent filters. Recombining filters allows you t build families of related systems.

Example: Suppose we have defined a new programming language called Mocha [Modular Object Computation with Hypothetical Algorithms]. Our task is t build a portable compiler for this language. T support existing and future hardware platforms we define an intermediate language AuLait [Another Universal Language for Intermediate Translation] running on a virtual machine Cup (Concurrent Uniform Processor). Conceptually, translation from Mocha t AuLait consists of the phases lexical analysis, syntax analysis, semantic analysis, intermediate-code generation (AuLait), and optionally intermediate-code optimization. Each stage has well-defined input and output data.
[image:]
· Type of Data Flow Architecture
· Filter is a component and pipe is a connector
· Filter has interfaces from which a set of inputs can flow in and a set of outputs can flow out.
· Incremental transformation of data by successive components.
· All data does not need t be processed for next filter t start working.
· Any set of filters may be combined in any order, although reasonable semantics are not guaranteed by this style.

Filter
· Independent entities
· Does not share state with other filters.
· N d not know the identity t upstream and downstream filters.
Pipes
· Stateless data stream
· Source end feeds filter input and sink receives output.
Common specialization of pipe and filter style is pipeline architectureThis architecture restricts the topologies t linear sequences of filters
[image:]
Advantages:
· Simplicity – Allows designer t understand overall input/output behavior of a system in terms of individual filters.
· Maintenance and reuse
· Concurrent Execution –Each filter can be implemented as a separate task and be executed in parallel with other filters.
Disadvantages:
· Interactive transformations are difficult – Filters being independent entities designer has t think of each filter as providing a complete transformation of input data t output data.
· N filter cooperation.
· Performance – may force a lowest common denominator on data transmission
		-parse and unparse
		-latency
Example:
· Compiler (Example of pipeline architecture)
		Stages: Lexical analysis,parsing,semantic analysis,code generation
· Programs written in Unix shell (Example of pipeline architecture)
 	 ls –l *.java | grep “foobar” | lpr –P gaston
· Functional programming
 		Kahn’s example. 3 models –each goes through 3 kinds 	of algebraic operations
· Distributed systems. CORBA components : Push and pull model.

4b> Advantages and disadvantages of pipes and Filters and Blackboard Patterns
Pipe-and-Filter Advantages and Disadvantages
· Advantages
· Simplicity: Simple, intuitive, efficient composition of components
· Reusability: High potential for reuse of components
· Evolvability: Changing architectures is trivial
· Efficiency: Limited amount of concurrency (contrast batch-sequential)
· Consistency: All components have the same interfaces, only one type of connector
· Distributability: Byte streams can be sent across networks
· Disadvantages
· Batch-oriented processing
· Must agree on lowest-common-denominator data format
· Does not guarantee semantics
· Limited application domain: stateless data transformation
The Blackboard Style
· Components
· Blackboard client programs
· Connector
· Blackboard: shared data repository, possibly with finite capacity
· Configurations
· Multiple clients sharing single blackboard
· Underlying computational model
· Synchronized, shared data transactions, with control driven entirely by blackboard state
· Stylistic invariants
· All clients see all transactions in the same order
· Advantages
· Simplicity: Only one connector (the blackboard) that everyone uses
· Evolvability: New types of components can be added easily
· Reliability(?): Concurrency controls of information, traditionally a tricky problem, can be largely addressed in the blackboard
· Disadvantages
· Blackboard becomes a bottleneck with to many clients
· Implicit “partitions” of information on the blackboard may cause confusion, reduce understandability

5a> 3 Part schema of Broker Pattern
The broker architectural pattern can be used t structure distributed software systems with decoupled components that interact by remote service invocations. A broker component is responsible for coordinating communication, such as requests, as well as for transmitting results and exceptions. Example:
[image:]
Suppose we are developing a city information system (CIS) designed t run on a wide area network. Some computers in the network host one or more services that maintain information about events, restaurants, hotels, historical monuments or public transportation. Computer terminals are connected t the network. Tourists throughout the city can retrieve information in which they are interested from the terminals using a World Wide Web (WWW) browser. This front-end software supports the on-line retrieval of information from the appropriate servers and its display on the screen. The data is distributed across the network, and is not all maintained in the terminals.
Context: Your environment is a distributed and possibly heterogeneous system with independent c operating components.
Problem: Building a complex software system as a set of decoupled and interoperating components, rather than as a monolithic application, results in greater flexibility, maintainability and changeability. By partitioning functionality int independent components the system becomes potentially distributable and scalable. Services for adding, removing, exchanging, activating and locating components are als needed. From a developer's viewpoint, there should essentially be n difference between developing software for centralized systems and developing for distributed ones. We have t balance the following forces:
 Components should be able t access services provided by other through remote, location-transparent service invocations.
 You need t exchange, add or remove components at run time.
 The architecture should hide system and implementation-specific details from the users of component and services.

Solution:
 Introduce a broker component t achieve better decoupling of clients and servers.
 Servers registers themselves with the broker make their services available t clients through method interfaces.
 Clients access the functionality of servers by sending requests via the broker.
 A broker’s tasks include locating the appropriate server, forwarding the request t the server, and transmitting results and exceptions back t the client.
 The Broker pattern reduces the complexity involved in developing distributed applications, because it makes distribution transparent t the developer.

5b> Any one Dynamic Scenari of MVC pattern
Scenari I shows how user input that results in changes t the model triggers the change-propagation mechanism:
 The controller accepts user input in its event-handling procedure, interprets the event, and activates a service procedure of the model.
 The model performs the requested service. This results in a change t its internal data.
 The model notifies all views and controllers registered with the change-propagation mechanism of the change by calling their update procedures.
 Each view requests the changed data from the model and redisplays itself on the screen.
 Each registered controller retrieves data from the model t enable or disable certain user functions..
 The original controller regains control and returns from its event handling procedure.
[image:]

5C>Advantages and Disadvantages of PAC Pattern
Benefits:-
 separation of concerns
 Different semantic concepts in the application domain are represented by separate agents.
 Support for change and extension
 Changes within the presentation or abstraction components of a PAC agent d not affect other agents in the system.
 Support for multi tasking
 PAC agents can be distributed easily t different threads, processes or machines.
 Multi tasking als facilitates multi user applications.
Liabilities:
 Increased system complexity
Implementation of every semantic concept within an application as its own PAC agent may result in a complex system structure.
 Complex control component
 Individual roles of control components should be strongly separated from each other. The implementations of these roles should not depend on specific details of other agents.
 The interface of control components should be independent of internal details.
 It is the responsibility of the control component t perform any necessary interface and data adaptation.
 Efficiency:
 Overhead in communication between PAC agents may impact system efficiency.
 Example: All intermediate-level agents are involved in data exchange. if a bottom-level agent retrieve data from top-level agent.
 Applicability:
 The smaller the atomic semantic concepts of an applications are, and the greater the similarly of their user interfaces, the less applicable this pattern is.

6A> Components of Microkernel Pattern
Microkernel pattern defines 5 kinds of participating components.
 Internal servers
 External servers
 Adapters
 Clients
 Microkernel

 Microkernel
 The microkernel represents the main component of the pattern.
 It implements central services such as communication facilities or resource handling.
 The microkernel is als responsible for maintaining system resources such as processes or files.
 It controls and coordinates the access t these resources.
 A microkernel implements atomic services, which we refer t as mechanisms.
 These mechanisms serve as a fundamental base on which more complex functionality called policies are constructed.

 An internal server (subsystem)
 Extends the functionality provided by microkernel.
 It represents a separate component that offers additional functionality.
 Microkernel invokes the functionality of internal services via service requests.
 Therefore internal servers can encapsulates some dependencies on the underlying hardware or software system.
 An external server (personality)
 Uses the microkernel for implementing its own view of the underlying application domain.
 Each external server runs in separate process.
 It receives service requests from client applications using the communication facilities provided by the microkernel, interprets these requests, executes the appropriate services, and returns its results t clients.
 Different external servers implement different policies for specific application domains.
 Client:
 It is an application that is associated with exactly one external server. It only accesses the programming interfaces provided by the external server.
 Problem arises if a client accesses the interfaces of its external server directly (direct dependency)
 Such a system does not support changeability
 If ext servers emulate existing application platforms clients will not run without modifications.
 Adapter (emulator)
 Represents the interfaces b/w clients and their external servers and allow clients t access the services of their external server in a portable way.
 They are part of the clients address space.
 The following OMT diagram shows the static structure of a microkernel system.
The following OMT diagram shows the static structure of a Microkernel system.
[image:]

6b> 3 Part Schema of Reflection Pattern
The reflection architectural pattern provides a mechanism for changing structure and behavior of software systems dynamically. It supports the modification of fundamental aspects, such as the type structures and function call mechanisms. In this pattern, an application is split int tw parts:
 A Meta level provides information about selected system properties and makes the s/w self aware.
 A base level includes application logic changes t information kept in the Meta level affect subsequent base-level behavior.
Example: Consider a C++ application that needs t write objects t disk and read them in again. Many solutions t this problem, such as implementing type-specific store and read methods, are expensive and error-prone. Persistence and application functionality are strongly interwoven. Instead we want t develop a persistence component that is independent of specific type structures
[image:]
Context:
Building systems that support their own modification a prior
 Problem:
 Designing a system that meets a wide range of different requirements a prior can be an overwhelming task.
 A better solution is t specify an architecture that is open t modification and extension i.e., we have t design for change and evolution.
 Several forces are associated with the problem:
 Changing software is tedious, error prone and often expensive.
 Adaptable software systems usually have a complex inner structure. Aspects that are subject t change are encapsulated within separate components.
 The more techniques that are necessary for keep in a system changeable the more awkward and complex its modifications becomes.
 Changes can be of any scale, from providing shortcuts for commonly used commands t adapting an application framework for a specific customer.
 Even fundamental aspects of software systems can change for ex. communication mechanisms b/w components.
Solution:
 Make the software self-aware, and make select aspects of its structure and behavior accessible for adaptation and change.
 This leads t an architecture that is split int tw major parts: A Meta level
 A base level
 Meta level provides a self representation of the s/w t give it knowledge of its own structure and behavior and consists of s called Meta objects (they encapsulate and represent information about the software). Ex: type structures algorithms or function call mechanisms.
 Base level defines the application logic. Its implementation uses the Meta objects t remain independent of those aspects that are likely t change.
 An interface is specified for manipulating the Meta objects. It is called the Meta object protocol (MOP) and allows clients t specify particular changes.

6C> Advantages and Disadvantages of Reflection Pattern
The reflection architecture provides the following Benefits:
 N explicit modification of source code:
You just specify a change by calling function of the MOP.
 Changing a software system is easy
MOP provides a safe and uniform mechanism for changing s/w. it hides all specific techniques such as use of visitors, factories from user.
 Support for many kind of change:
Because Meta objects can encapsulate every aspect of system behavior, state and structure. The reflection architecture als has Liabilities:
 Modifications at meta level may cause damage:
 Incorrect modifications from users cause serious damage t the s/w or its environment. Ex: changing a database schema without suspending the execution of objects in the applications that use it or passing code t the MOP that includes semantic errors
 Robustness of MOP is therefore of great importance.
 Increased number of components:
It includes more Meta objects than base level components.
 Lower efficiency:
Slower than non reflective systems because of complex relnp b/w base and meta level.
 Not all possible changes t the software are supported
Ex: changes or extensions t base level code.
 Not all languages support reflection
Difficult t implement in C ++

7A>Implementation of Whole & Part Structure
1. Design the public interface of the whole
Analyze the functionality the whole must offer t its clients.
Only consider the clients view point in this step.
Think of the whole as an atomic component that is not structured int parts.
2. Separate the whole int parts, or synthesize it from existing ones.
There are tw approaches t assembling the parts either assemble a whole ‘bottom-up’ from existing parts, or decompose it ‘top-down’ int smaller parts.
Mixtures of both approaches is often applied
3. If you follow a bottom up approach, use existing parts from component libraries or class libraries and specify their collaboration.
4. If you follow a top down approach, partition the Wholes services int smaller collaborating services and map these collaborating services t separate parts.
5. Specify the services of the whole in terms of services of the parts.
Decide whether all part services are called only by their whole, or if parts may als call each other. Tw are tw possible ways t call a Part service: @ If a client request is forwarded t a Part service, the Part does not use any knowledge about the execution context of the Whole, relying on its own environment instead. @ A delegation approach requires the Whole t pass its own context information t the Part.
6. Implement the parts
If parts are whole-part structures themselves, design them recursively starting with step1 . if not reuse existing parts from a library.
7. Implement the whole
Implement services that depend on part objects by invoking their services from the whole.
7B> Dynamics of Master & Slave Pattern
The scenari comprises six phases:
 A client requests a service from the master.
 The master partitions the task int several equal sub-tasks.
 The master delegates the execution of these sub-tasks t several slave instances, starts their execution and waits for the results they return.
 The slaves perform the processing of the sub-tasks and return the results of their computation back t the master.
 The master computes a final result for the whole task from the partial results received from the slaves.
 The master returns this result t the client.
[image:]
7C> Benefits and Liabilities of Proxy pattern
Consequences: The Proxy pattern provides the following Benefits:
 Enhanced efficiency and lower cost

The Virtual Proxy variant helps t implement a 'load-on-demand' strategy. This allows you t avoid unnecessary loads from disk and usually speeds up your application
 Decoupling clients from the location of server components

By putting all location information and addressing functionality int a Remote Proxy variant, clients are not affected by migration of servers or changes in the networking infrastructure. This allows client code t become more stable and reusable.
 Separation of housekeeping code from functionality.

A proxy relieves the client of burdens that d not inherently belong t the task the client is t perform. The Proxy pattern has the following Liabilities:
Less efficiency due t indirection

All proxies introduce an additional layer of indirection.
Over kill via sophisticated strategies
Be careful with intricate strategies for caching or loading on demand they d not always pay.

8A> ADD steps

1. Choose The Module T Decompose
 the following are the modules: system->subsystem->submodule
 Decomposition typically starts with system, which then decompose int subsystem and then int sub-modules.
 In our Example, the garage door opener is a system
 Opener must interoperate with the home information system

2. Refine the module
1. Choose Architectural Drivers:
 choose the architectural drivers from the quality scenarios and functional requirements
 The drivers will be among the top priority requirements for the module.
 In the garage system, the 4 scenarios were architectural drivers,
 By examining them, we see
 Real-time performance requirement
 Modifiability requirement t support product line
 Requirements are not treated as equals
 Less important requirements are satisfied within constraints obtained by satisfying more important requirements
 This is a difference of ADD from other architecture design methods

2. Choose Architectural Pattern
 For each quality requirement there are identifiable tactics and then identifiable patterns that implement these tactics.
 The goal of this step is t establish an overall architectural pattern for the module
 The pattern needs t satisfy the architectural pattern for the module tactics selected t satisfy the drivers
 Tw factors involved in selecting tactics:
 Architectural drivers themselves
 Side effects of the pattern implementing the tactic on other requirements
 This yields the following tactics:
Semantic coherence and information hiding. Separate responsibilities dealing with the user interface, communication, and sensors int their own modules.
Increase computational efficiency. The performance-critical computations should be made as efficient as possible.
Schedule wisely. The performance-critical computations should be scheduled t ensure the achievement of the timing deadline.

3. Instantiate Modules And Allocate Functionality Using Multiple Views
 Instantiate modules

The non-performance-critical module of Figure 7.2 becomes instantiated as diagnosis and raising/lowering door modules in Figure 7.3. We als identify several responsibilities of the virtual machine: communication and sensor reading and actuator control. This yields tw instances of the virtual machine that are als shown in Figure 7.3.
 Allocate functionality

Assigning responsibilities t the children in a decomposition als leads t the discovery of necessary information exchange. At this point in the design, it is not important t define how the information is exchanged. Is the information pushed or pulled? Is it passed as a message or a call parameter? These are all questions that need t be answered later in the design process. At this point only the information itself and the producer and consumer roles are of interest

 Represent the architecture with multiple views
 Module decomposition view
 Concurrency view
 Tw users doing similar things at the same time
 One user performing multiple activities simultaneously
 Starting up the system
 Shutting down the system
 Deployment view

4. Define Interfaces Of Child Modules
 It documents what this module provides t others.
 Analyzing the decomposition int the 3 views provides interaction information for the interface
 Module view:
 Producers/consumers relations
 patterns of communication
 Concurrency view:
 Interactions among threads
 Synchronization information
 Deployment view
 Hardware requirement
 Timing requirements
 Communication requirements

5. Verify And Refine Use Cases And Quality Scenarios As Constraints For The Child Modules
 Functional requirements
Using functional requirements t verify and refine
Decomposing functional requirements assigns responsibilities t child modules
We can use these responsibilities t generate use cases for the child module
 User interface:
 Handle user requests
 Translate for raising/lowering module
 Display responses
 Raising/lowering door module
 Control actuators t raise/lower door
 Stop when completed opening or closing
 Obstacle detection:
 Recognize when object is detected
 Stop or reverse the closing of the door
 Communication virtual machine
 Manage communication with house information system(HIS)

 Scheduler
 Guarantee that deadlines are met when obstacle is detected
 Sensor/actuator virtual machine
 Manage interactions with sensors/actuators
 Diagnosis:
 Manage diagnosis interaction with HIS

 Constraints:
 The decomposition satisfies the constraint
 OS constraint-> satisfied if child module is OS
 The constraint is satisfied by a single module
 Constraint is inherited by the child module
 The constraint is satisfied by a collection of child modules
 E.g., using client and server modules t satisfy a communication constraint

 Quality scenarios:
 Quality scenarios als need t be verified and assigned t child modules
 A quality scenari may be satisfied by the decomposition itself, i.e, n additional impact on child modules
 A quality scenari may be satisfied by the decomposition but generating constraints for the children
 The decomposition may be “neutral” with respect t a quality scenari
 A quality scenari may not be satisfied with the current decomposition

8B> 5 Uses of Architectural documentation
Architecture documentation is both prescriptive and descriptive. That is, for some audiences it prescribes what should be true by placing constraints on decisions t be made. For other audiences it describes what is true by recounting decisions already made about a system's design.
 All of this tells us that different stakeholders for the documentation have different needs—different kinds of information, different levels of information, and different treatments of information.
 One of the most fundamental rules for technical documentation in general, and software architecture documentation in particular, is t write from the point of view of the reader. Documentation that was easy t write but is not easy t read will not be used, and "easy t read" is in the eye of the beholder—or in this case, the stakeholder.
 Documentation facilitates that communication. Some examples of architectural stakeholders and the information they might expect t find in the documentation are given in Table 9.1.
 In addition, each stakeholders come in tw varieties: seasoned and new. A new stakeholder will want information similar in content t what his seasoned counterpart wants, but in smaller and more introductory doses. Architecture documentation is a key means for educating people wh need an overview: new developers, funding sponsors, visitors t the project, and s forth.
[image:]
	
[image:]

8C> Documentation across views
Primary presentation- elements and their relationships, contains main information about these system , usually graphical or tabular.
 Element catalog- details of those elements and relations in the picture,
 Context diagram- how the system relates t its environment
 Variability guide- how t exercise any variation points a variability guide should include documentation about each point of variation in the architecture, including
 The options among which a choice is t be made
 The binding time of the option. Some choices are made at design time, some at build time, and others at runtime.
 Architecture background –why the design reflected in the view came t be? an architecture background includes
 rationale, explaining why the decisions reflected in the view were made and why alternatives were rejected
 analysis results, which justify the design or explain what would have t change in the face of a modification
 assumptions reflected in the design
 Glossary of terms used in the views, with a brief description of each.
 Other information includes management information such as authorship, configuration control data, and change histories. Or the architect might record references t specific sections of a requirements document t establish traceability

image4.png

image5.png

image6.png

image7.jpeg

image8.gif

image9.gif

image10.png

image11.png

image12.png

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image1.jpeg

image2.gif

image3.gif

