NGRS TECSSONT e

|

USN 13 (¢ Ry G IC Is

FVAYR VTN
CECSBUHENE
& ‘ 150 S44
Fourth Semester BE,

Degree Examin
. ation, June/July 2018
Microprocess .

ors and Microcontrollers

Time. 3 hrs
Max. Marks: 80

Note: Answer any 171 E full yuestions, choosing one full guestion from each module.

i
i - Mgl
! I & What s o MICroprocessor” With a neat dragram explain the internal block diagram of 8086
s microprocessor along with functions of each block and registers (10 Marks)
2 b What is an sddressing mode? List the addressing modes of 8086 Hp with one example each
ke (any mix modes) y
i ! (06 Marks)
. OR
3 5‘ 2 a. What are the assembler directives? Explain the following assembler directives
(0 DB (i) Assume (iii) OFFSET (iv) PFTR (04 Marks)
b, What is a flag and Mg register? Explain the formut of flag register with a suitable example
(06 Marks)
¥ Write an assembly level program (ALP) tw sort a given set of *n' 16-bit _sumbers in
descending order. Using Bubble sort algorithm to sort given elements 106 Marks)
Module-2
3 & Explain the following instructions with a suitable example:
(i MOV (i) PUSH (i) LEA (iv) SHR
(v) ROL (vi) CMP (vii) DAA (viii) TEST, (08 Marks)
b What is an interrupt? Explain various types with an interrupt vector table. (08 Marks)
OR e
Explain the following instructions with a suitable example:
" &A’l‘ ' (ﬁ) RCR (iil) AAA o ifiv) MUL
v) DIV (vi) LOOP (vii) ROL — (viii) OR (08 Marks)
Mate instructions with an example. (08 Marks)

n how to ldeg;igg,verfbw and underflow using flags in a flag register
ic operation on 16-bit numbers. (68 Marks)
" n 10 enable the memory address 08000H to OFFFFH to
(08 Marks)
OR

d format of 8255 I1C in 1/O mode and BSR mode. Find the

1, Peo— Pey = in and Peq - Pey = out. Use port address of

get data from port A and send it to port B. (08 Marks)

) read Py and check number of one’s in a 8-bit data
arity else 00h on Port A (Po) if it is an odd parity.

(08 Marks)

s
@3‘.

¢ What are the silent features of ARM instruction set”

15CS44
a. Compare CISC with RISC Modulest (0% Marks)
b. Explain registers used under various modes. 0; Marks)
¢ Explain ARM core data flow model with « neat diagram :(,;, q,.ru;
OR
u, lj.xplnin the architecture of a typical embedded device based in ARM core with a neat
d'mgram. . (08 Murks)
b. Explain the various fields in the current program status register. (08 Marks)
e Module-5
a. Explain the following instructions of ARM processor with suitable example:
(n MVN = “ii) RSB (iii) ORR (iv) MLA
(v) SMULL ~ (vi) LDR (vii) SWP (viii) SWPB (08 Marks)
b. Explain various formats of ADD instructions based on operands of ARM7 processor.
N (04 Marks)
c. H‘“ =35, r;=8 and using the following instruction, write values of re. r+after execution
(%\;J— MOV ry,rs, LSL 22 (04 Marks)
- 3 : OR
& Explain software interrupt instruction of ARM processor. (06 Marks)
b. Explain various types of SWAP instructions with syntax and example. (06 Marks)
(04 Marks)

Solutions of Microprocessor and Microcontrollers (15CS44) - July2018
Module 1

la. What is microprocessor? With a neat diagram explain the internal block diagram of
8086 microprocessor along with functions of each block and registers.

Ans: Microprocessor is an integrated circuit used in computer for computations.

Execution Unit (EU) Bus Interface Unit (BIU)
CS
ES
SS
CH Cl DS
BpP 1P
DI A
N
N Y
\ \
¥
A v Multiplexed Address generation
\ A A bus and bus control
v v)
| Operands |
ﬁ A
\ Instruction
queue
A
Y
Flags I
Figure 1-1. Internal Block Diagram of the 8088/86 CPU
(Repnntad by permission of lntel Corporation, Copyright Intel Corp. 1989)
Nonpipelined teteh 1 oo S -
(c.2. NORS) o exee] fetch 2 exec 2
Pipelmad ete ke
fetch | exec |
(e.g.. R086) L
fetch 2 exec 2
fetch 3 exec 3
Figure 1-2. Pipelined vs. Nonpipelined Execution

-

Intel implemented the concept of pipelining i 3 / itti i

!\ul structure ot the microprocessor inI:u twr:\ Ecctio?\i: "l‘hl? ii()::f::g: 3::? ‘():I gl)ng g‘ehl? :)Cf-.
mterface unit (BIU). These two sections work simultancously. The BlUi J dnt e
ory and penpherals while the EU executes instructions previously t'clchez‘iusrslb"tg mcnl:-
only it the BIU keeps ahead of the EU; thus the BIU of the 8088/86 has a bu'ﬁ‘c ")S WOE S
(see l-"lgurc 1-1). The butYer is 4 bytes long in the 8088 and 6 bytes iAn the 80;4‘6(' ‘ll;l;:‘
mstruction takes too long to execute, the queue is filled to its maximum capacity‘and th?.i
l:usc.\‘ will sitidle. The BIU fetches a new instruction whenever the queue has room for
2 bytes in the 6-byte 8086 queue, and for | byte in the 4-byte 8088 queue. In some cir-
cumstances, the microprocessor must flush out the queuc. For example, when a jump
wstruction 1s executed, the BIU starts to fetch information from the new location in mem-
ory and information in the queue that was fetched previously is discarded. In this situa-
tion the EU must w_uit until the BIU fetches the new instruction. This is referred to in com-
puter science terminology as a branch penalty. In a pipelined CPU, this means that too
much jumping around reduces the efficiency of a program. Pipelining in the 8088/86 has
two stages, fetch and execute, but in more powerful computers pipelining can have many
stages. The concept of pipelining combined with an increased number of data bus pins
has, in recent years, led to the design of very powerful microprocessors.

Registers

AX

o In the CPU, registers are used to store 16-bit register
information temporarily. That information could
be one or two bytes of data to be processed or the
address of data. The registers of the 8088/86 fall AH AL

into the six categories outlined in Table 1-4. The 8-bit register 8-bit register
general-purpose registers in 8088/86 micro-
processors can be accessed as either 16-bit or 8-
bit registers. All other registers can be accessed only as the full 16 bits. In the 8088/86,
data types are either 8 or 16 bits. To access 12-bit data, for example, a 16-bit register must
be used with the highest 4 bits set to 0. The bits of a register are numbered in descending
order, as shown below.

8-bit register:

D7 D6 | D5|D4|D3|D2|DI|DO

16-bit register:

pisIpi4lp13|D12 D11 |DI0] D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | DI | DO

Different registers in the 8088/86 are used for different functions, and since some
instructions use only specific registers to perform their tasks, the use of registers will be
described in the context of instructions and their application in a given program. The first
letter of each general register indicates its use. AX is usgd for the accumulgtor, BX as a
base addressing register, CX as a counter in loop operations, and DX to point to data in
1/O operations. Table 1-4 lists the registers of the 8088/86/286.

Table 1-4: Registers of the 8088/86/286 by Category
Category Bits Register Names

eneral 16 AX, BX, CX, DX

8 AH, AL, BH, BL, CH, CL, DH, DL
Pointer 16 SP (stack pointer), BP (base pointer)
Index 16 SI (source index), DI (destination index)
Segment 16 CS (code segment), DS (data segment),

SS (stack segment), ES (extra segment)
Instruction 16 IP (instruction pointer)
C T

.FVloare: The general lrgglstemizn%%gsz?al the Tall 16 bits (such as AX), or as the high byte

only (AH) or low byte only (AL).

1b. What is an addressing mode ? List the addressing modes of 8086 microprocessor
with one example each(any six modes).

Ans:

T T TN TRTTTrao
SECTION 1.7: x86 ADDRESSING MODES

The CPU can access operands (data) in various ways, called addressing modes.
The number of addressing modes is determined when the microprocessor is designed and
cannot be changed. The x86 provides a total of seven distinct addressing modes:
register
immediate
direct
register indirect
based relative
indexed relative
. based indexed relative

Each addressing mode is explained below, and application examples arc given in
later chapters. ADD and MOV instructions are used below to explain addressing modes.

MO U W

Register addressing mode

The register addressing mode involves the use of registers to hold the data to be
manipulated. Memory is not accessed when this addressing mode is executed; therefore,
it is relatively fast. Examples of register addressing mode follow:

MOV BX,DX ;copy the contents of DX into BX

MOV ES,AX ;copy the contents of AX into ES

ADI AL, BH sadd the contents of EH to contents of AL

It should be noted that the source and destination registers must match in size. In
other words. coding "0 L, Ax™ will give an error, since the source is a 16-bit register
and the destination 1s an 8-bit register, s

Immediate addressing mode

In the immediate addressing mode, the source operand is a constant. In immedi-
ate addressing mode, as the name implics, when the instruction is assembled, the operand
comes immediately after the opcode. For this reason, this addressing mode executes
quickly. However, in programming it has limited use. Immediate addressing mode can be
used to load information into any of the registers except the segment registers and flag
registers. Examples:

MOV AX, 2550H ;move 2550H into AX
MOV CX, 625 ;load the decimal value 625 into CX
MOV BL, 40H ;load 40H into BL

To move information to the segment registers, the data must first be moved to a
general-purpose register and then to the segment register. Example:
MOV AX,2550H

MOV DS,AX
MOV DS,0123H ;illegal! cannot move data into segment reg.'

In the first two addressing modes, the operands are either inside the microproces-
sor or tagged along with the instruction. In most programs, the data to be processed is
often in some memory location outside the CPU. There are many ways of accessing the
data in the data segment. The following describes those different methods.

Direct addressing mode

In the direct addressing mode the data is in some memory location(s) and the
address of the data in memory comes immediately after the instruction. Note that in imme-
diate addressing, the operand itself is provided with the instruction, whereas in direct
addressing mode, the address of the operand is provided with the instruction. This address

= isthe offset address and one can calculate the physical address by shifting left the DS reg-

ister and adding it to the offset as follows:
MOV DL,[2400] ;jmove contents of DS:2400H into DL

In this case the physical address is calculated by combining the contents of offset
location 2400 with DS, the data segment register. Notice the bracket around the address.
In the absence of this bracket executing the command will give an error since it is inter-
preted to move the value 2400 (16-bit data) into register DL, an 8-bit register. See

Example 1-15.

Example 1-15

Find the physical address of the memory location and its contents after the execution of the fol-
lowing, assuming that DS = 1512H.

MOV AL, 99H

MOV [3518] ,AL

Solution:

First AL is initialized to 99H, then in line two, the contents of AL are moved to logical address
DS:3518, which is 1512:3518. Shifting DS left and adding it to the offset gives the physical
address of 18638H (15120H + 3518H = 18638H). That means after the execution of the second
instruction, the memory location with address 18638H will contain the value 99H.

Register indirect addressing mode |
In the register indirect uddrcssing mo’d‘c, the ‘uddrcss ot'.thc' I‘I:ICITIOF())L(I:()':::\‘(I%)[I]
where the operand resides is held by a register. The registers l!s:(:(.l .lor‘l 1;.5 [l)lllrt{l) . ﬂ"t:{)
DI, and BX. If these three registers are used as pointers, that is, if they hold the offset o
the memory location, they must be combined with DS in order to generate the 20-bit phys-

ical address. For example:

the contents of the memory

MOV AL,[BX] ;moves into AL
;location pointed to by DS:BX.

Notice that BX is in brackets. In the absence of brackc;ts, the code is interpreted
as an instruction moving the contents of register BX to AL (which gives an error bccapse
source and destination do not match) instead of the contents of the memory location
whose offset address is in BX. The physical address is calculated by shifting DS left one
hex position and adding BX to it. The same rules apply when using register SI or DI

MOV CL,[s1) jmove contents of DS:SI into CL
MOV [DI) ,AH ;jmove contents of AH into DS:DI

The examples above moved byte-sized data. Example 1-16 shows 16-bit data.

Example 1-16
Assume that DS = 1120, SI = 2498, and AX = 17FE. Show the contents of memory locations
after the execution of "MOvV [s1],AX".

Solution:
The contents of AX are moved into memory locations with logical address DS:SI and DS:SI +

1 therefore, the physical address starts at DS (shifted left) + SI = 13698. According to the little
endian convention, low address 13698H contains FE, the low byte, and high address 13699H

will contain 17, the high byte.

Based relative addressing mode

In the based relative addressing mode, base registers BX and BP, as well as a dis- —
placement value, are used to calculate what is called the effective address. The default seg-
ments used for the calculation of the physical address (PA) are DS for BX and SS for BP.

For example:

;smove DS:BX+10 and DS:BX+10+1 into CX

MOV CX,[BX] +10
;PA = DS (shifted left) + BX + 10

Alternative codings are "MOV CX,[BX+10] " or "MOV CX,10[BX) ". Again the
low address contents will go into CL and the high address contents into CH. In the case

of the BP register,

MOV AL,[BP] +5 ;PA = 55 (shifted left) + BP + 5§

Again, alternative codings are "MOV AL,[BP+5] " or "MOV AL, 5[BP] ". A brief
mention should be made of the terminology effective address used in Intel literature. In
"MOV AL,[BP] +5", BP+5 is called the effective address since the fifth byte from the

beginning of the offset BP is moved to register AL. Similarly in "MOV cX,[BX] +10",
BX+10 is called the effective address. :

Indexed relative addressing mode

The indexed relative addressing mode works the same as the based relative
addressing mode, except that registers DI and SI hold the offset address. Examples: s

MOV DX,[SI] +5 ;PA = DS (shi
D ‘ ; 5 (shifted left) + &
MOV CL,[DI] +20 ;iPA = DS (shifted left) 4 Di t ?0

ixample 1-17 gives further ex: " of ; ;
Example 1-17 gives further examples of indexed relative addressing mode

Example 1-17

Assume that DS = 4500, 8§ = 2000, BX = 2100, SI = 1486, DI = 8500, BP = 7814, and AX =
2512, All values are in hex. Show the exact physical me ion "

: ! | ¢ ysical memory location where : i
cach of the following. All values are in hex. ? RN o
(a) MOV[BX] +20,AX (b)MOV[SI] +10,AX
(¢) MOV DI] +4,AX (d)MOV[BP] +12,AX

Solution:

In each case PA = segment register (shifted left) + offset register + displacement,
(a) DS:BX+20 location 47120 = (12) and 47121 = (25)

(b) DS:SI+10 location 46496 = (12) and 46497 = (25)

(¢) DS:DI+4 location 4D504 = (12) and 4D505 = (25)

(d) SS:BP+12 location 27826 = (12) and 27827 = (25)

Based indexed addressing mode

. By combining based and indexed addressing modes, a new addressing mode is
derived called the based indexed addressing mode. In this mode, one base register and
one index register are used. Examples:

MOV CL,[BX][DI]+8 ;PA = DS (shifted left) + BX + DI + 8

MOV CH,[BX][SI] +20 ;PA = DS (shifted left) + BX + SI + 20
MOV AH,[BP][DI] +12 ;PA = SS (shifted left) + BP + DI + 12
MOV AH,[BP][SI] +29 ;PA = SS (shifted left) + BP + SI + 29

The coding of the instructions above can vary; for example, the last example
could have been written in either of the following two ways:

MOV AH,[BP+SI+29]

MOV AH,[SI+BP+29]

;the register order does not matter
Note that "Mov AX,[SI][DI +displacement" is illegal.

Table 1-5: Offset Reg]'sters for Various Segments
SS

Segment register: CS DS ES
Offset register(s): 1P SI, DI, BX SI, DI, BX SP, BP

In many of the examples above, the MOV instruction was used for the sake of
clarity, cven though one can usc any instruction as long as thaf. instruction supports the
addressing mode. For example, the instruction "ADD DL,[BX] wpuld add the contents
of the memory location pointed at by DS:BX to the contents of register DL.

Segment overrides
Table 1-5 summarizes the offset registers that can be used with the four segment
registers. The x86 CPU allows the program to override the default segment and use any
o 2. . . 3 "MOV
segme ister. To do that, specify the segment in the coc}e. For gxample, in
B chysi b f the operand to be moved into AL is DS:BX, as was

AL, [BX] ", the physical address 0 ‘ :
shorwn carlier si?]c{: DS is the default segment for pointer BX. To ox:lemdc that d;(f!aulsts,
specify the desired segment in the instruction as "MOV AL, ES:[BX] " Now the adare

of the operand being moved to AL is ES:BX instead of DS:BX. Extensive use of all these
49

CHAPTER 1: THE x86 MICROPROCESSOR

2a. What are the assembler directives? Explain the following directives.

Keywords which gives directions to assembler are called assembler directives. These are
not converted to machine code.

i.DB (DEFINE BYTE)

The DB directive is used to declare a byte type variable, or a set aside one or more storage locations
of type byte in memory.

PRICES DB 49H, 98H, 29H Declare array of 3 bytes named PRICE and initialize them with
specified values.

i, ASSUME

The ASSUME directive is used tell the assembler the name of the logical segment it should use for a
specified segment. The statement ASSUME CS: CODE, for example, tells the assembler that the
instructions for a program are in a logical segment named CODE. The statement ASSUME DS:
DATA tells the assembler that for any program instruction, which refers to the data segment, it should
use the logical segment called DATA.

iii. OFFSET

OFFSET is an operator, which tells the assembler to determine the offset or displacement of a named
data item (variable), a procedure from the start of the segment, which contains it. When the assembler
reads the statement MOV BX, OFFSET PRICES, for example, it will determine the offset of the
variable PRICES from the start of the segment in which PRICES is defined and will load this value
into BX.

iv.PTR (POINTER)

The PTR operator is used to assign a specific type to a variable or a label. It is necessary to do this in
any instruction where the type of the operand is not clear. When the assembler reads the instruction
INC [BX], for example, it will not know whether to increment the byte pointed to by BX. We use the
PTR operator to clarify how we want the assembler to code the instruction. The statement INC BYTE
PTR [BX] tells the assembler that we want to increment the byte pointed to by BX. The statement
INC WORD PTR [BX] tells the assembler that we want to increment the word pointed to by BX. The
PTR operator assigns the type specified before PTR to the variable specified after PTR. We can also
use the PTR operator to clarify our intentions when we use indirect Jump instructions. The statement
JMP [BX], for example, does not tell the assembler whether to code the instruction for a near jump. If
we want to do a near jump, we write the instruction as JMP WORD PTR [BX]. If we want to do a far
jump, we write the instruction as JMP DWORD PTR [BX].

2 b. What is the flag and flag register? Explain the format of flag register with a suitable
example.

The 8086 PSW is 16 bits, but only 9 of its bits are used. Each bit of 8086 PSW is called a
flag.

» The flag register is a 16-bit register sometimes referred as the stafus register. Although the
register is 16-bit. Not all the bits are used.

» Conditional flags: 6 of the flags are called the conditional flags, meaning that they indicate
some condition that resulted after an instruction was executed. These 6 are: CF, PF, AF, ZF, SF,
and OF,

» The 16 bits of the flag registers:

RIRIR|R|oc|or|w |7 |ss|Z#|u|ar|ulP|uyu|cF

= reserved SF= sign flag
= undefined = zero flag
OF= overflow flag = auxiliary carry flag
DF= direction flag PF= panty flag
IF= interrupt flag CF= carry flag
= trap flag

CF, the Carry Flag: This flag is set whenever there is a carry out, either from d7 afier an 8-bit
operation, or from d15 after a 16-bit data operation.

PF, the Parity Flag: After certain operations, the parity of the result’s low-order byte is checked. If
the byte has an even number of s, the panity flag is set to |; otherwise, it is cleared.

AF, the Auxiliary Carry Flag: If there 1s a carry from d3 to d4 of an operation this bit is set to |,
otherwise cleared (set to 0).

ZF, the Zero Flag: The ZF 1s set to | if the result of the anthmetic or logical operation is zero,
otherwise, 1t 1s cleared (set to 0).

SF, the Sign Flag: MSB is used as the sign bit of the binary representation of the signed numbers,
After anthmetic or logical operations the MSB is copied into SF to indicate the sign of the result.

TF, the Trap Flag: When this flag 1s set it allows the program to single step, meaning to execute
one instruction at a time. Used for debugging purposes.

IF, Interrupt Enable Flag: This bit is set or cleared to enable or disable only the external interrupt
requests.

DF, the Direction Flag: This bit is used to control the direction of the string operations.

OF, the Overflow Flag: This flag is set whenever the result of a signed number operation is too
large, causing the high-order bit to overflow into the sign bit.

2c¢. Write an assembly level program to sort of ‘n’ 16 bit —numbers in descending order.
Use bubble sort algorithm to sort given elements.

PROGRAM TO SORT THE NUMBERS IN DESCENDING ORDER

DATA SEGMENT

x DW 42H,34H,26H,17H,09H
LEN EQU 05

ASCD DB 10 DUP(0)

DATA ENDS

CODE SEGMENT
ASSUME CS:CODE,DS:DATA

START: MOV AX,DATA
MOV DS,AX

MOV BX,LEN-1

MOV CX,BX

UP1: MOV BX,CX

LEA SI,LX

UP: MOV AX,[SI]
MOV DX, [SI+2]
CMP AX,DX

JA DOWN

MOV [S1],DX
MOV [SI+2],AX

DOWN: INC SI
INC SI

DEC BX

JNZ UP

DEC CX

JNZ UP1
MOV AH,4CH
INT 21H
CODE ENDS

END START
Module 2

3a. Explain the following instructions with a suitable example.

1.MOV - MOV Destination, Source

The MOV instruction copies a word or byte of data from a specified source to a specified
destination. The destination can be a register or a memory location. The source can be a register, a
memory location or an immediate number. The source and destination cannot both be memory
locations. They must both be of the same type (bytes or words). MOV instruction does not affect any
flag.
MOV CX, 037AH Put immediate number 037AH to CX
MOV BL, [437AH] Copy byte in DS at offset 437AH to BL

MOV AX, BX Copy content of register BX to AX
MOV DL, [BX] Copy byte from memory at [BX] to DL
MOV DS, BX Copy word from BX to DS register

MOV RESULT [BP], AX Copy AX to two memory locations; AL to the first location, AH to the
second; EA of the first memory location is sum of the displacement represented by RESULTS and
content of BP. Physical address = EA + SS.

MOV ES: RESULTS [BP], AX Same as the above instruction, but physical address = EA + ES,
because of the segment override prefix ES

PUSH - PUSH Source

The PUSH instruction decrements the stack pointer by 2 and copies a word from a specified source to the
location in the stack segment to which the stack pointer points. The source of the word can be general-

purpose register, segment register, or memory. The stack segment register and the stack pointer must be
initialized before this instruction can be used. PUSH can be used to save data on the stack so that it will
not destroved by a procedure. This instruction does not affect any flag.

» PUSH BX Decrement SP by 2, copy BX to stack.

» PUSH DS Decrement SP by 2, copy DS to stack.

» PUSH BL Illegal: must push a word

PUSH TABLE [BX] Decrement SP by 2, and copy word from memory in DS at

EA =TABLE + [BX] to stack

LEA — LEA Register, Source

This instruction determines the offset of the variable or memory location named as the source and puts
this offset in the indicated 16-bit register. LEA does not affect any flag.

» LEA BX, PRICES Load BX with offset of PRICE in DS
» LEA BP, SS: STACK TOP Load BP with offset of STACK_TOP in SS
» LEA CX. [BX][DI] Load CX with EA = [BX] + [DI]

SHR - SHR Destination, Count

This instruction shifts each bit in the specified destination some number of bit positions to the right. As a
bit is shifted out of the MSB position, a (0 is put in its place. The bit shifted out of the LSB position goes
to CF. In the case of multi-bit shifts, CF will contain the bit most recently shifted out from the LSB. Bits
shifted into CF previously will be lost.

LsSB CF

0 — % MSB___..........., .

The destination operand can be a byte or a word in a register or in a memory location. If vou want to shift
the operand by one bit position, you can specify this by putting a | in the count position of the instruction.
For shifts of more than 1 bit position, load the desired number of shifts into the CL register, and put “CL”
in the count position of the instruction.

The flags are affected by SHR as follow: CF contains the bit most recently shifted out from LSB. For a
count of one, OF will be | if the two MSBs are not both 0's. For multiple-bit shifts, OF will be
meaningless. SF and ZF will be updated to show the condition of the destination. PF will have meaning
only for an 8-bit destination. AF is undefined.

» SHRBP,1 Shift word in BP one bit position right, 0 in MSB

= MOV CL,03H Load desired number of shifts into CL
SHR BYTE PTR [BX] Shift byte in DS at offset [BX] 3 bits right; 0°s in 3 MSBs

ROL — ROL Destination, Count

This instruction rotates all the bits in a specified word or byte to the left some number of bit positions.
The data bit rotated out of MSB is circled back into the LSB. It is also copied into CF. In the case of
multiple-bit rotate, CF will contain a copy of the bit most recently moved out of the MSB.

CF ¢ MSB e, LSB

_T

The destination can be a register or a memory location. If you to want rotate the operand by one bit
position, you can specify this by putting | in the count position in the instruction. To rotate more than one
bit position, load the desired number into the CL register and put “CL” in the count position of the
instruction.

ROL affects only CF and OF. OF will be a | after a single bit ROL if the MSB was changed by the rotate.

» ROL AX, 1 Rotate the word in AX | bit position left, MSB to LSB and CF
» MOV CL, 04H Load number of bits to rotate in CL

ROL BL, CL Rotate BL 4 bit positions
» ROL FACTOR [BX]. | Rotate the word or byte in DS at EA = FACTOR [BX]

by | bit position left into CF

6.CMP — CMP Destination, Source

This instruction compares a byte / word in the specified source with a byte / word in the specified
destination. The source can be an immediate number, a register, or a memory location. The
destination can be a register or a memory location. However, the source and the destination cannot
both be memory locations. The comparison is actually done by subtracting the source byte or word
from the destination byte or word. The source and the destination are not changed, but the flags are set
to indicate the results of the comparison. AF, OF, SF, ZF, PF, and CF are updated by the CMP
instruction. For the instruction CMP CX, BX, the values of CF, ZF, and SF will be as follows:

Ex: CMP AL, 01H Compare immediate number 01H with byte in AL

7. DAA (DECIMAL ADJUST AFTER BCD ADDITION)

This instruction is used to make sure the result of adding two packed BCD numbers is adjusted to
be a legal BCD number. The result of the addition must be in AL for DAA to work correctly. If the
lower nibble in AL after an addition is greater than 9 or AF was set by the addition, then the DAA
instruction will add 6 to the lower nibble in AL. If the result in the upper nibble of AL in now greater
than 9 or if the carry flag was set by the addition or correction, then the DAA instruction will add 60H
to AL.

Let AL =59 BCD, and BL = 35 BCD
ADD AL, BL AL = 8EH; lower nibble > 9, add 06H to AL
DAA AL=94BCD,CF=0

8. TEST — TEST Destination, Source

This instruction ANDs the byte / word in the specified source with the byte / word in the specified
destination. Flags are updated, but neither operand is changed. The test instruction is often used to set
flags before a Conditional jump instruction. The source can be an immediate number, the content of a
register, or the content of a memory location. The destination can be a register or a memory location.
The source and the destination cannot both be memory locations. CF and OF are both 0’s after TEST.
PF, SF and ZF will be updated to show the results of the destination. AF is be undefined.
TEST AL, BH AND BH with AL. No result stored; Update PF, SF, ZF.
TEST CX, 0001H AND CX with immediate number 0001H; No result stored; Update PF, SF,
ZF

3b.What is an interrupt. ?Explain various types with an interrupt vector table.

Ans:
SECTION 14.1: 8088/86 INTERRUPTS

Table 14-1: Interrupt Vector

An interrupt is an external event

that informs the CPU that a device needs Physical | Logic
its service. In the 8088/86 there are a INT y gical
total of 256 interrupts: INT 00, lN"}l;EOI), Number | Address Address
..« INT FF (sometimes called TYPES). —
When an interrupt is executed, tthhe INT 00 00000 OOOO-O&
microprocessor automatically. saves the 0004 0000-

flag register (FR), the instruction pointer INT 01 0 0-0004
(IP), and the code segment register (CS) INT 02 | 00008 0000-0008
on the stack, and goes to a fixed memory —
location. In x86 PCs, the memory loca- INT 03 0000C OOOM
tion to which an interrupt goes is always !

four times the value of the interrupt num- INT 04 00010 OOOOM
ber. For example, INT 03 will go to INT 05 00014 0000-0014
address 0000CH (4 x 3 = 12 = OCH).

Table 14-1 is a partial list of the interrupt

vector table. INT FF 003FC 0000-03FC

Interrupt service routine (ISR)

For every interrupt there must be a program associated with it. When an interrupt
is invoked it is asked to run a program to perform a certain service. This program is com-
monly referred to as an interrupt service routine (ISR). The interrupt service routine is

also called the interrupt handler. When an interrupt is invoked, the CPU runs the interrupt
service routine. Now the question is, where is the address of the interrupt service routine?
As can be seen from Table 14-1, for every interrupt there are allocated four bytes of mem-
ory in the interrupt vector table. Two bytes are for the IP and the other two are for the CS
of the ISR. These four memory locations provide the addresses of the interrupt service
routine for which the interrupt was invoked, Thus the lowest 1024 bytes (256 x 4 = 1024)
of memory space are set aside for the interrupt vector table and must not be used for any
other function. Figure 14-1 provides a list of interrupts and their designated functions as

defined by Intel Corporation.

Example 14-1

(a) INT 12H (b) INT 8

Solution:

() ForINTg,

e
00021H_, 00022H, and 00023H in th
The logical address is

0000:0020H~0000:0023H.

Yrn

Find the physical and logical addresses in the interrupt vector table associated with:

dI ;
and IP of the ISR belonging to INT 12H. The logical address is 0000:0048H-0000:004BH

have 8 x 4 = 32 = 20H; therefore, memory addresses 00020H,
€ Interrupt vector table hold the CS:IP of the INT 81

—

ca MO W Y

Categories of interrupts here the first byte is for the opcode ang the s
INT nn" is a 2-byte instruction whe that we can have a maximum of 256 : ¢

- This means L .
te is the interrupt number. This N . some are used for softwsg
LTS tncrmants. OF these 256 interrupts, some are used for Software ineqpyy!
00 T FFH) mte s. € ey
and some are for hardware interrupts.

Hardware interrupts oy e = ot

As we saw in Chapters 9 and 10, there are three pmstmlil}\tl]"(no:] r;taalr(e SSSQCia(.
ha are INTR (interrupt request), , skable intey.

ey acknowledge). The use of INTA will be discussed in Section

rupt), and INTA (interrupt acknow g hich can be masked (ignored) and unmaskey
14.3. INTR is an input signal into the CPU, whic ver, NML which is also an fop e
through the use of instructions CLI and STL Howwer: v ’t tions CLI ang Spu sig-
nal into the CPU, cannot be masked and unmasked using instructio -1 and STI, apg
gy s i t. INTR and NMI are activated external.
for this reason it is called a nonmaskable interrup _ S
ly by putting 5 V on the pins of NMI and INTR of the x86 microprocessor. vhen either
of these intc‘_mlpls is activated, the x86 finishes the instruction that it is executing, ppsh?s
FR and the CS:IP of the next instruction onto the stack, then jumps to a fixed location ip
the interrupt vector table and fetches the CS:IP for the interrupt service routine (ISR) ass.
ciated with that interrupt. At the end of the ISR, the IRET Instruction causes the CPU to
get (pop) back its original FR and CS:IP from the stack, thereby 'forcmg the CPU to cop.
tinue at the instruction where it left off when the interrupt came in.

Intel has embedded "INT 02" into the x86 microprocessor to be used only for
NMI. Whenever the NMI pin is activated, the CPU will go to memory l_ocatlon .00008 to
get the address (CS:IP) of the interrupt service routine '(ISR) associated with NMJ.
Memory locations 00008, 00009, 0000A, and 0000B contain the 4 bytes of CS.:IP of the
ISR belonging to NMI. In contrast, this is not the case for the other hardware pin, INTR.
There is no specific location in the vector table assigned to INTR. The reason is that INTR
is used to expand the number of hardware interrupts and should be allowed to use any
"INT nn" that has not been previously assigned. The 8259 programmable interrupt con-
troller (PIC) chip can be connected to INTR to expand the number of hardware interrupts
to 64. In the case of the IBM PC, one Intel 8259 PIC chip is used to add a total of 8 hard-
ware interrupts to the microprocessor. IBM PC AT, PS/2 80286, 80386, 80486, and Intel
Pentium computers use two 8259 chips to allow up to 16 hardware interrupts. The design
of hardware interrupts and the use of the 8259 in the IBM PC are covered in Sections 14.3
and 14.4, while ISA bus interrupts are covered in Section 14.5.

Software interrupts

If an ISR is called upon as a result of the execution of an x86 instruction such as
“INT nn", it is referred to as a software interrupt since it was invoked from software, not
from external hardware. Examples of such interrupts are DOS "INT 21H" function calls
and video interrupts "INT 10H", which were covered in Chapter 4. These interrupts can
be invoked in the sequence of code just like a CALL or any other x86 instruction. Many
of the interrupts in this category are used by the MS DOS operating system and IBM
BIOS to perform essential tasks that €Very computer must provide to the system and the
user. Within this group of interrupts there are also some predefined functions associated
with some of the interrupts, They are "INT 00" (divide error), "INT 01" (single step), "INT
03" (breakpoint), and "INT 04" (signed number overflow). Each is described below. These
Interrupts are shown in Figure 14-1. Aside from "INT 00" to "INT 04", which have pre-
defined functions, the rest of the interrupts from "INT 05" to "INT FF" can be used to
implement either software or hardware interrupts,

ed with hardware interrupts. They

Interrupts ang the flag register

Among bits D() to D15 of the fla i C iated
i i y . g register, there are two bits that are associa
}1:;]:1 g:z ‘l)?lte(r)r;pt. D9, or IF Interrupt enable flag), and D8, or TF (trap or single step flag)-
» OF (overflow flag) can pe used by the interrupt. See Figure 14-2. g

370

. fivide a number by zero. Since the result nt:dl.V'd"?g,“ m"“b%"i by zero jg unde.
attempt tmll -‘(‘I;U has no way of handling such a result, it automatically inVokeg the
h_nq«t ;tnd l I‘Lv oo ‘illllk‘l'l'“hl.'ln the 8088/86 microprocessor, out of 256 ‘“ten’ums, Inte
;:‘l\\‘“\'{:“lk':?i:;ct «\n\\;\‘ l;\l I 0 for the exception interrupt. Tl}erc'urc ﬂ;uqny I;\?‘;rgoc’,‘c?mion hap.
dii}\u nterrupts in x86 CPUs, which. are dlSCllSSCdt md:i’vcitd[cl‘o: nuﬁﬁmr ol 70;3 "I“’Okedb
the ﬁ\icmpmccssm* whenever there is an allcn_1|‘1t 0 e fie displayi;; ti] N the xgq
PC. the service subroutine for this interrupt 18 respons s g the m

"DIVIDE ERROR" on the screen if a program such as the following is executeq:
MOV AL, 92 ;AL=92
SUB CL,CL ;CL=0 .
DIV CL ;92/0=undefined result

INT 0 is also invoked if the quotient is too large to fit into the assigned register
when executing a DIV instruction. Look at the following case:

MOV AX, OFFFFH ;AX=FFFFH

MOV BL, 2 ;BL=2

DIV BL ;65535/2 = 32767 larger than 255
;maximum capacity of AL

Put INT 3 at the end of the above two programs in DEBUG and see the reaction

of the PC. For further discussion of divide error interrupts due to an oversized quotient,
see Chapter 3. ~

INT 01 (single step)

In executing a sequence of instructions, there is a need to examine the contents of
the CPU's registers and system memory. This is often done by executing the program one
instruction at a time and then inspecting registers and memory. This is commonly referred
to as single-stepping, or performing a trace. Intel has designated INT 01 specifically for
implementation of single-stepping. To single-step, the trap flag (TF), D8 of the flag reg-
ister, must be set to 1. Then after execution of each instruction, the 8088/86 automatical-
ly jumps to physical location 00004 to fetch the 4 bytes for CS:IP of the interrupt service
routine, whose job is, among other things, to dump the registers onto the screen. Now the
question is, how is the trap flag set or reset? Although Intel has not provided any specific
instruction for this purpose (unlike IF, which uses STI and CLI instructions to set or reset),
one can write a simple program to do that. The following shows how to make TF = 0:

PUSHF

POP AX

AND AX,1111111011111111B
PUSH AX

POPF

' Recall that TF is D8 of the fla
is left to the reader, To make TF = |,
AND instruction above

g register. The analysis of the above two programs
one simply uses the OR instruction in place of the

INT 02 (nonmaskable interrupt)

‘ All Inte] x86 microprocessors have a pin designated NMI. It is an active-high
input. Intel has set agide [NT

2 for the NMI interrupt. Whenever the NMI pin of the x86
is activated by a high (5 V) signal, the CPU jumpg (o op. tion 00008 ©
fetch the CS:IP of the jpy o Jumps to physical memory locati

1ed discussion e - TUPtService routine associated with NML Section 14.4 contains
a detailed discussion of jtg purpose and application,

<} L NN
%

’,
%
W

INT 03 (breakpoint)

To allow implement

. ati inte in g : :
aside INT 03 solely for theg ton of breakpoints in software engineering, Intel has set

CPU and system memory anijurpt)sc. Whereas in single-step mode, one can inspect the

examine the CPU e er the execution of each instruction, a breakpoint is used to

esting point about INT 3e.m°"y after the execution of a group of instructions. One inter-

othier inter bkl 1S th_e fact that it is a 1-byte instruction. This is in contrast to all
rupt instructions of the form "INT nn", which are 2-byte instructions.

INT04(ﬁgnednumberovmﬂow)

imtructiI:l:-mtqmpt 18 invchd by a signed number overflow condition. Thferc is an

f ssociated with this, INTO (interrupt on overflow). For a detailed discussion
of signed qumbe; overflow, see Chapter 6. If the instruction INTO is placed after a signed
nulpper arithmetic or logic operation such as IMUL or ADD, the CPU will activate INT
04 if OF = 1. In cases where OF = 0, the INTO instruction is not executed but is bypassed

222 ac;S as a NOP (no operation) instruction. To understand that, look at the following
mple.

MOV AL, DATA1

MOV BL, DATA2

ADD AL,BL;add BL to AL
INTO

Suppose in the above program that DATA1 = +64 = 0100 0000 and DATA2 = +64
= 0100 0000. The INTO instruction will be executed and the 8088/86 will jump to phys-
ical location 00010H, the memory location associated with INT 04. The carry from D6 to
D7 causes the overflow flag to become 1.

+ 64 0100 0000
+ + 64 0100 0000
+128 1000 0000 OF=1 and the result is not +128

The above incorrect result causes OF to be set to 1. INTO causes the CPU to per-
form "INT 4" and jump to physical location 00010H of the vector table to get the CS:IP
of the service routine. Suppose that the data in the above program was DATA1 = +64 and
DATA2 = +17. In that case, OF would become 0; the INTO is not executed and acts sim-
ply as a NOP (no operation) instruction.

4a.Explain the following instructions with a suitable example:.
XLAT / XLATB — TRANSLATE A BYTE IN AL

The XLATB instruction is used to translate a byte from one code (8 bits or less) to another code (8 bits or
less). The instruction replaces a byte in AL register with a byte pointed to by BX in a lookup table in the
memory. Before the XLATB instruction can be executed, the lookup table containing the values for a new
code must be put in memory, and the offset of the starting address of the lookup table must be loaded in
BX. The code byte to be translated is put in AL. The XLATRE instruction adds the byte in AL to the offset
of the start of the table in BX. It then copies the byte from the address pointed to by (BX + AL) back into
AL. XLATB instruction does not affect any flag.

8086 routine to convert ASCII code byte to EBCDIC equivalent: ASCII code byte 1s in AL at the start,
EBCDIC code in AL after conversion.
» MOV BX, OFFSET EBCDIC Point BX to the start of EBCDIC table in DS

XLATB Replace ASCII in AL with EBCDIC from table.

RCR — RCR Destination, Count

This instruction rotates all the bits in a specified word or byte some number of bit positions to the right.
The operation circular because the LSB of the operand is rotated into the carry flag and the bit in the carry
tlag is rotate around into MSB of the operand.

T

For multi-bit rotate, CF will contain the bit most recently rotated out of the LSB.

The destination can be a register or a memory location. If you want to rotate the operand by one bit
position, you can specify this by putting a 1 in the count position of the instruction. To rotate more than
one bit position, load the desired number into the CL register and put “CL” in the count position of the
instruction.

RCR affects only CF and OF. OF will be a 1 after a single bit RCR. if the MSB was changed by the rotate.
OF 1s undefined after the mului-bit rotate.

RCRBX.1 Word in BX right | bit, CF to MSB, LSB to CF
» MOVCL, 4 Load CL for rotating 4 bit position
RCR BYTE PTR [BX]. 4 Rotate the byte at offset [BX] in DS 4 bit positions right

CF = original bit 3, Bit 4 — original CF.

iii.
AAA (ASCIT ADJUST FOR ADDITION)

Numerical data coming into a computer from a terminal is usually in ASCII code. In this code, the
numbers 0 to 9 are represented by the ASCII codes 30H to 39H. The 8086 allows vou to add the ASCII
codes for two decimal digits without masking off the “3™ in the upper nibble of each. After the addition,
the AAA instruction is used to make sure the result is the correct unpacked BCD.

Let AL=00110101 {(ASCII 5), and BL=0011 1001 (ASCII 9)
ADD AL, BL AL=0110 1110 (6EH, which is incorrect BCD)
AAN AL =0000 0100 (unpacked BCD 4)
CF = | indicates answer is 14 decimal.

The AAA instruction works only on the AL register. The AAA instruction updates AF and CF; but OF,
PF, SF and ZF are left undefined.

iv.
MUL — MUL Source

This instruction multiplies an unsigned byte in some source with an unsigned byte in AL register or an
unsigned word in some sowrce with an unsigned word in AX register. The source can be a register or a
memory location. When a byte is multiplied by the content of AL, the result (product) is put in AX. When
a word 1s multiplied by the content of AX, the result is put in DX and AX registers. If the most significant
byte of a 16-bit result or the most significant word of a 32-bit result 1s 0, CF and OF will both be 07s. AF,
PF, SF and ZF are undefined after a MUL instruction.

If yvou want to multiply a byte with a word, you must first move the byte to a word location such as an
extended register and fill the upper byte of the word with all (°s. You cannot use the CBW instruction for
this, because the CBW instruction fills the upper byte with copies of the most significant bit of the lower
byte.

» MUL BH Multiply AL with BH: result in AX
» MULCX Multiply AX with CX; result high word in DX, low word in AX
» MUL BYTE PTR [BX] Multiply AL with byte in DS pointed to by [BX]

\'%

DIV — DIV Source

This instruction 1s used to divide an unsigned word by a byte or to divide an unsigned double word (32
bits) by a word. When a word is divided by a byte, the word must be in the AX register. The divisor can
be in a register or a memory location. After the division, AL will contain the B-bit quotient, and AH will
contain the B-bit remainder. When a double word 15 divided by a word, the most significant word of the
double word must be in DX, and the least significant word of the double word must be in AX. After the
division, AX will contain the 16-bit quotient and DX will contain the 16-bit remainder. If an attempt is
made to divide by 0 or if the quotient 1s too large to fit in the destination (greater than FFH / FFFFH), the
8086 will generate a type 0 interrupt. All flags are undefined after a DIV instruction.

If you want to divide a byte by a byte, you must first put the dividend byte in AL and fill AH with all (s,
Likewise, if you want to divide a word by another word, then put the dividend word in AX and fill DX
with all 0°s.

» DIV BL Divide word in AX by byte in BL; Quotient in AL, remainder in AH
» DIVCX Divide down word in DX and AX by word in CX;
Quotient in AX, and remainder in DX,
Vi.
LOOP (JUMP TO SPECIFIED LABEL IF CX # 0 AFTER AUTO DECREMENT))

This instruction is used to repeat a series of instructions some number of times. The number of times the
instruction sequence is to be repeated i1s loaded into CX. Each time the LOOP instruction executes, CX is
automatically decremented by 1. If CX is not 0, execution will jump to a destination specified by a label
in the instruction. If CX = 0 after the auto decrement, execution will simply go on to the next instruction
after LOOP. The destination address for the jump must be in the range of —128 bytes to +127 bytes from
the address of the instruction after the LOOP instruction. This instruction does not affect any tlag.

» MOV BX, OFFSET PRICES Point BX at first element in array
MOV CX, 40 Load CX with number of elements in array
NEXT: MOV AL, [BX] Get element from array
INC AL Increment the content of AL
MOV [BX], AL Put result back in array
INC BX Increment BX to point to next location

LOOP NEXT Repeat until all elements adjusted

Vii.
ROL — ROL Destination, Count

This instruction rotates all the bits in a specified word or byte to the left some number of bit positions.
The data bit rotated out of MSB is circled back into the L5SB. It is also copied into CF. In the case of
multiple-bit rotate, CF will contain a copy of the bit most recently moved out of the MSB.

CF g MSB g LSB

| |

The destination can be a register or a memory location. If you to want rotate the operand by one bit
position, you can specify this by putting | in the count position in the instruction. To rotate more than one
bit position, load the desired number into the CL register and put “CL™ in the count position of the
instruction.

ROL affects only CF and OF. OF will be a 1 after a single bit ROL if the MSB was changed by the rotate.

» ROLAX,I Rotate the word in AX | bit position left, MSB to L5SB and CF
» MOV CL, 04H Load number of bits to rotate in CL

ROL BL, CL Rotate BL 4 bit positions
#» ROL FACTOR [BX]. | Rotate the word or byte in DS at EA = FACTOR. [BX]

by 1 bit position left into CF
viii.
OR — OR Destination, Source

This instruction ORs each bit in a source byte or word with the same numbered bit in a destination byte or
word. The result is put in the specified destination. The content of the specified source is not changed.

The source can be an immediate number, the content of a register, or the content of a memory location.
The destination can be a register or a memory location. The source and destination cannot both be
memory locations. CF and OF are both 0 after OR. PF, SF, and ZF are updated by the OR instruction. AF
1s undefined. PF has meaning only for an 8-bit operand.

» OR AH, CL CL ORed with AH, result in AH, CL not changed

4 b. Explain rotate instructions with an example.
Ans:

ROR R/M. 1/CL Used for division by power of 2

CL has no. of times rotation is to be done

ROR BH. 1 R/M Cv
Rotate right without cy Before After
BH | 0100 0010 ‘ ‘ 0010 0001 |

i | | | |

RCR R/, 1/CL

CL has no. of times rotation is to be done

RCE. EH. 1 EM Cy
[—
Eotate right with cy Before After
EH 01000010 1010 0001
Cy 1 0
ROL B/M, 1/CL Used for mumltiplication by 2°
ROL EH, CL Cy EM
Fotate left without cy Before After
BH 0010 0010 1000 1000
CL 02H
Cy 1 0
RCLE/M. 1/CL
RECLEH,CL Cy M
P
Rotate left with cy EBefore After
BH 00100010 1000 0010
CL 02H
Cy 1 0

Module 3
5a. With example , explain how to identify overflow using flags in a flag register for

performing an arithmetic operation on 16 bit numbers.

Ans:
Overflow flag in 16-bit operations

In a 16-bit operation, OF is set to 1 in either of two cases:

1. There is a carry from D14 to D15 but no carry out of D15 (CF = 0).
2. There is a carry from D15 out (CF = 1) but no carry from D14 to D15.

Again the overflow flag is low (not set) if there is a carry from both D14 to D15
and from D15 out. The OF is set to 1 only when there is a carry from D14 to D15 or from

D15 out, but not from both. See Examples 6-8 and 6-9.

Avoiding erroneous results in signed number operations

To avoid the problems associated with signed number operations, one can sign-
extend the operand. Sign extension copies the sign bit (D7) of the lower byte of a register
into the upper bits of the register, or copies the sign bit of a 16-bit register into another
register. CBW (convert signed byte to signed word) and CWD (convert signed word to
signed double word) are used to perform sign extension. They work as follows:

Example 6-8 :
, s
Observe the results in the following: '
MOV AX, 6E2FH ;28,207
MOV CX, 13D4H i+ 5,076
ADD AX,CX ;= 33,283 is the expected answer
6E2F 0110 1110 0010 1111
+13D4 0001 0011 1101 0100 .
8203 1000 0010 0000 0011 = - 32,253 incorrect!
OF=1,CF=0,SF=1
Example 6-9

Observe the results in the following:

Mov DX, 542FH : 21,551
MOV BX, 12EQH ; +4,832
ADD DX, BX 1=26,383
543F 0101 0100 0010 1111
+12E0 0001 0010 1110 0000
670F 0110 0111 0000 1111 = 26,383 (correct answer); OF =0, CF =0, SF=0
_ , 0 7 0
CBW will copy D7 (the sign flag) to
all bits of AH. This is demonstrated below. |-
Notice that the operand is assumed to be AL
and the previous contents of AH are destroyed. AH AL
MOV AL, +96 ;AL=0110 0000
CBW ;now AH=0000 0000 and AL=0110 0000
or:
MOV AL, -2 ;AL=1111 1110
CBW ;AH=1111 1111 and AL=1111 1110

CWD sign-extends AX. It copies D15 of AX to all bits of the DX register. This is
used for signed word operands. This is illustrated below. ,

15 0 15 0
DX . AX
Look at the following example:
23; AX, +260 7AX=0000 0001 0000 0100 or AX=0104H

;DX=0000H and AX=0104H

Another example:

MOV
CWD

AX,-32766 7AX=1000 0000 0000 0010B or AX=8002H
;DX=FFFF and AX=8002

5b. Explain 74138 decoder configuration to enable the memory address 08000 H to OFFFF H
to connect four 8k RAMS.

Ans.
{
L)

% |
MR | 12 12
Addsess Limer e o tommecl Rk DA =9 =€k
s 13 Lime < (—Pm - All) '

. !
Addecc ’Qﬂw\ﬁﬁ Adddis AsAyha A—h Ay ko

GE008 OO0 | 50 Oo0D 000D 0000?
OFFF O 600 |) pip il Al m;;
alp +o Addiess limeg
et |
P 3000
Ade— |
A —— 0oFfF
Ms a Ao0G
mu
>
AL
A o BFFF
Oco0o6
A -
4 ODFFF
Jrﬁ%ﬁ bEODLL
e Ay An | thip Cleded| ——e
W1 o o |1 " ORI
Yol Vo | |
7 % I W Y B
Npe Y VY L4
e ——————]

a. Briefly explain the control word format of 8255 in 1/O and BSR mode. Find
the control word if Px=0/p, Pg =i/p, Pc.=i/p, Pcu=0/p. Use port address of

300h-303H and write a program to read from port A and send to Port B.

8255

The 8255 is a 40-pin DIP chip. It has three separately accessible ports. The ports are
each 8-bit, and are named A, B, and C. The individual ports of the 8255 can be
programmed to be input or output, and can be changed dynamically. In addition,
8255 ports, have handshaking capability, thereby allowing interface with devices

needs handshaking signals, such as printers.
Mode selection of the 8255

While ports A, B, and C are used to input or output data, it is the control register that
must be programmed to select the operation mode of the three ports. The ports of

the 8255 can be programmed in any of the following modes.

1.

Mode 0, simple I/O mode. In this mode, any of the ports A, B, CL, and CU can
be programmed as input or output. In this mode, all bits are out or all are in. In
other words, there is no such thing as single-bit control as we have seen in
PO — P3 of the 8051. Since the vast majority of applications involving the 8255
use this simple 1/0 mode, we will concentrate on this mode in this chapter.
Mode 1. In this mode, ports A and B can be used as input or output ports with
handshaking capabilities. Handshaking signals are provided by the bits of port
C.

Mode 2. In this mode, port A can be used as a bidirectional 1/0 port with hand
shaking capabilities whose signals are provided by port C. Port B can be used
either in simple 1/0 mode or handshaking mode 1.

BSR (bit set/reset) mode. In this mode, only the individual bits of port C can
be programmed.

The 8255 chip is programmed in any of the 4 modes mentioned by sending a byte to the
control register of the 8255. We must first find the port addresses assigned to each of ports
A, B, C, and the control register. This is called mapping the 1/O port.

Instructions for input and output port transfer

e IN — Used to read a byte from the provided port to the accumulator.

e OUT — Used to send out a byte from the accumulator to the provided port.

Control Word register format:

I/0 mode

p7 | o6 | o5 | o4 | o3 | o2 | o1 | DO
I |
Group B
Port C
{Upper: PCT - PC4) {Lower: PC3 - PCO)
E 1 = input; 0 = output 1 = input; 0 = output |
Port A Port B
1 = input; 0 = output 1 = input; 0 = output
Mode Selection I Mode Selection
00 = Mode 0 {0 = Mode 0
01 = Mode 1 [1 =Mode 1
1x = Mode 2 —
1= /O Mode
0 = BSR Mode
Control Word Format 8255A
BSR Mode
CONTROL WORD
1) 1]} 1131 D4 | D3 02 (1}] 1]1]
I I I
| X ¥ X Bit setireset
[1=s5et
Don't 0 =reset
care
BIT SELECT
Dj1|2{3|4|5|6|T
HOj4|0{1|0{1|0|1(B0
+O{0(1(1|0)D|1{1|B1
ojojojoj1|1|1(1|B2
BIT SET/RESET FLAG
0=ACTIVE

Control word if Pa=0/p, Pg =i/p, Pci=i/p, Pcy=0/p

CONTROL WORD: 10000011 = 83H

Control word if P=i/p, Pg =0/p, Pc=0/p

CONTROL WORD: 10010000 = 90H

.MODEL SMALL
.STACK 100
DATA

PA EQU 300H
PB EQU 301H
CT EQU 303H
.CODE

MOV AX, @DATA
MOV DS, AX
MOV DX, CT
MOV AL, 90H
OUT DX, AL
MOV DX, PA

IN AL, DX

MOV DX, PB
OUT DX, AL
MOV AH, 4CH
INT 21H

END

b. Write an ALP to read PB and check the number of ones in an 8 bit data. Put
FFH on Port A if it is even parity else display 00 on port A.

Control word if PA=0o/p, PB =i/p, PC=0/p

CONTROL WORD: 10000010 = 82H

.MODEL SMALL

.STACK 100

.DATA

PA EQU 300H

PB EQU 301H

CT EQU 303H

.CODE

MOV AX, @DATA

MOV DS, AX

MOV DX, CT

MOV AL, 82H

OUT DX, AL

MOV DX, PB

IN AL, DX

; check the number of ones
MOV CX,8

MOV BL,00

BACK:SHR AL,1

JNC ZERO

INC BL; Number of ones
ZERO:LOOP BACK

SHR BL,1 ;check number of ones even number or not
JNC DISP

MOV AL,00H

JMP LAST
DISP:MOQOV AL,OFFH
LAST:MOV DX, PA
OUT DX, AL

MOV AH, 4CH

INT 21H

END

MODULE 4

7. Module 4
a. Compare CISC with RISC

The RISC (Reduced Instruction Set Computer) philosophy concentrates on reducing the
complexity of instructions performed by the hardware because it is easier to provide greater
flexibility and intelligence in software rather than hardware. As a result, a RISC design places
greater demands on the compiler. In contrast, the traditional complex instruction set computer
(CISC) relies more on the hardware for instruction functionality, and consequently the CISC
instructions are more complicated

Instructions—RISC processors have a reduced number of instruction classes. These classes
provide simple operations that can each execute in a single cycle. The compiler or
programmer synthesizes complicated operations (for example, a divide operation) by
combining several simple instructions. Each instruction is a fixed length to allow the pipeline
to fetch future instructions before decoding the current instruction. In contrast, in CISC
processors the instructions are often of variable size and take many cycles to execute.

Pipelines— The processing of instructions is broken down into smaller units that can be
executed in parallel by pipelines. Ideally the pipeline advances by one step on each cycle for
maximum throughput. Instructions can be decoded in one pipeline stage. There is no need for
an instruction to be executed by a mini program called microcode as on CISC processors.

Registers—RISC machines have a large general-purpose register set. Any register can
contain either data or an address. Registers act as the fast local memory store for all data
processing operations. In contrast, CISC processors have dedicated registers for specific
purposes.

Load-store architecture—The processor operates on data held in registers. Separate load
and store instructions transfer data between the register bank and external memory. Memory
accesses are costly, so separating memory accesses from data processing provides an
advantage because you can use data items held in the register bank multiple times without
needing multiple memory accesses. In contrast, with a CISC design the data processing
operations can act on memory directly.

Hardware complexity- RISC emphasizes on software complexity while CISC emphasizes
on hardware complexity

CISC RISC
- Greater -
[Compiler) Complexity | Compiler
Code Code
Generation Generation
Greater Y !
Complexity Processor Processor

b. Explain registers used under various modes.

Processor Modes: The processor mode determines which registers are active and the access
rights to the CPSR register itself. The least significant 5 bits in the CPSR determines the
mode. Each processor mode is either privileged or non-privileged.

e A privileged mode allows full read-write access to the CPSR. Conversely, a non-
privileged mode only allows read access to the control field in the CPSR but still
allows read-write access to the condition flags.

e There are seven processor modes in total: six privileged modes (abort, fast interrupt
request, interrupt request, supervisor, system, and undefined) and one non-privileged
mode (user).

e The processor can change mode by either writing directly in to the control field (bO-
b4) when it is in a privileged mode or when exceptions or interrupts happens.

e The following exceptions and interrupts cause a mode change: reset, interrupt
request, fast interrupt request, software interrupt, data abort, prefetch abort, and
undefined instruction. Exceptions and interrupts suspend the normal execution of
sequential instructions and jump to a specific location.

The processor enters

e abort mode when there is a failed attempt to access memory.

e Fast interrupt request and interrupt request modes correspond to the two interrupt
levels available.

e Supervisor mode is the mode that the processor is in after reset and is generally the
mode that an operating system kernel operates in.

e System mode is a special version of user mode that allows full read-write access to
the cpsr.

e Undefined mode when the processor encounters an instruction that is undefined or not
supported by the implementation.

e User mode is used for programs and applications.

Banked Registers

All processor modes except system mode have a set of associated banked registers that are a
subset of the main 16 registers. A banked register maps one-to one onto a user mode register.
If the processor mode changes change processor mode, a banked register from the new mode
will replace an existing register.

Banked registers of a particular mode are denoted by an underline character post-fixed to the
mode
Mnemonic or _mode.

User and
Svsiem

)
ri
r2
r3
r4
"5 Fast
6 interrupt
7 request
r8 r8_fig
ro r9_fig
rio rl0_fiq
T, r11_fig Interrupt . o
R r12_fiq request Supervisor Undefined Abort
ri3 sp ri3_fig ri3_irq ri3_sve ri3_undef rl3_abt
ridlr rl4_fig rld_irg rid_sve ri4_undef ri4_abt
rl5 pc
cpsr
| Spsr_ ﬁq] | spsr_irq | | spsr_sv(‘l [spsr_undef | | spsr_abt I

Fig 7.b.1 banked registers

Figure 7.b.1 shows all 37 registers in the register file. Of those, 20 registers are hidden from a
program at different times. These registers are called banked registers. They are available
only when the processor is in a particular mode.

For example, when the processor is in the interrupt request mode, the instructions user
execute still access registers named r13 and r14. However, these registers are the banked
registers r13_irq and r14_irg. The user mode registers r13_usr and r14_usr are not affected by
the instruction referencing these registers. A program still has normal access to the other
registers rQ to r12.

e The rl4 _irg contains the return address and rl3_irq contains the stack pointer for
interrupt request mode, the cpsr_usr will be copied into spsr_irg.

To return back to user mode, a special return instruction is used that instructs the core
to restore the original cpsr from the spsr_irg and bank in the user registers r13 and
ri4.

Another important feature is that the cpsr is not copied into the spsr when a mode
change is forced due to a program writing directly to the cpsr. The saving of the cpsr
only occurs when an exception or interrupt is raised.

c. Explain ARM core dataflow model

A programmer can think of an ARM core as functional units connected by data buses, as
shown in Figure 7.c.1, where, the arrows represent the flow of data, the lines represent the
buses, and the boxes represent either an operation unit or a storage area. This model is
called data flow model or programmers view of architecture.

Data
T Instruction
decoder
Sign extend
Write Read
rl3 Register file J Rd
pc r0-rl5 Result
Rn|A Rm |

B
+.-\ B|Acc

Barrel shifter
- MAC
N
& ALU }

Address register
L

o

Address
Fig 7.c.1 ARM core data flow model (Von Neumann Model)

Data enters the processor core through the Data bus. The data may be an
instruction to execute or a data item. The instruction decoder translates
instructions before they are executed. Each instruction executed belongs to a
particular instruction set.

The ARM processor uses a load-store architecture. This means it has two
instruction types for transferring data in and out of the processor: load instructions
copy data from memory to registers in the core, and conversely the store
instructions copy data from registers to memory.

There are no data processing instructions that directly manipulate data in memory.
Thus, data processing is carried out solely in registers.

Data items are placed in the register file—a storage bank made up of 32-bit
registers.

Registers

Since the ARMY core is a 32-bit processor, most instructions treat the registers as
holding signed or unsigned 32-bit values. The sign extend hardware converts
signed 8-bit and 16-bit numbers to 32-bit values as they are read from memory
and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single
result or destination register, Rd. Source operands are read from the register file
using the internal buses A and B, respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the
register values Rn and Rm from the A and B buses and computes a result. Data
processing instructions write the result in Rd directly to the register file.

Load and store instructions use the ALU to generate an address to be held in the
address register and broadcast on the Address bus.

One important feature of the ARM is that register Rm alternatively can be pre-
processed in the barrel shifter before it enters the ALU. Together the barrel shifter
and ALU can calculate a wide range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the
register file using the Result bus.

For load and store instructions the incrementer updates the address register before
the core reads or writes the next register value from or to the next sequential
memory location.

General-purpose registers are identified with the letter r prefixed to the register number. For
example, register 1lis given the label r1.There are up to 18 active registers: 16 data registers
and 2 processor status registers. The data registers are visible to the programmer as r0 to ri5.

Three registers are assigned with special function:

Register r13 is traditionally used as the stack pointer (sp) and stores the head of the
stack in the current processor mode.

Register r14 is called the link register (Ir) and is where the core puts the return address
whenever it calls a subroutine.

Register rl5 is the program counter (pc) and contains the address of the next
instruction to be fetched by the processor.

In addition to the 16 data registers, there are two program status registers: cpsr
(current PSR) and spsr (Saved PSR).

The register file contains all the registers available to a programmer. Which registers
are visible to the programmer depend upon the current mode of the processor.

The registers r0 to r13 are orthogonal—any instruction that you can apply to r0 you can
equally well apply to any of the other registers. However, there are instructions that treat r14
and r15 in a special way.

8.

a. Explain the architecture of typical embedded device based in ARM core
with a neat diagram.

Embedded systems can control many different devices, from small sensors found on a
production line, to the real-time control systems used on a NASA space probe. All these
devices use a combination of software and hardware components. Each component is chosen
for efficiency and, if applicable, is designed for future extension and expansion.

Embedded System Hardware:

ROM
SRAM
FLASHROM

——{ Memory controller |

DRAM
{AHB-exlemll I:l'ldge)— External bus

|Aun-muidge|
Ethernet — erne

physical

Console —— Serial UARTs

RM) (Conrollers) (Peripherals] Bus

Figure 8.a.1 ARM based embedded device

Figure 8.a.1 shows a typical embedded device based on an ARM core. We can separate the
device into four main hardware components:

1. The ARM processor controls the embedded device. Different versions of the ARM
processor are available to suit the desired operating characteristics. An ARM
processor comprises a core (the execution engine that processes instructions and
manipulates data) plus the surrounding components that interface it with a bus. These
components can include memory management and caches.

2. Controllers coordinate important functional blocks of the system. Two commonly
found controllers are interrupt and memory controllers.

3. The peripherals provide all the input-output capability external to the chip and are
responsible for the uniqueness of the embedded device.

4. A bus is used to communicate between different parts of the device.

ARM Bus Technology: embedded devices use an on-chip bus that is internal to the chip and
that allows different peripheral devices to be interconnected with an ARM core.

There are two different classes of devices attached to the bus. The ARM processor core is a
bus master—a logical device capable of initiating a data transfer with another device across

the same bus. Peripherals tend to be bus slaves—logical devices capable only of responding
to a transfer request from a bus master device.

e AMBA Bus Protocol: The Advanced Microcontroller Bus Architecture (AMBA) has
been widely adopted as the on-chip bus architecture used for ARM processors. The
first AMBA buses introduced were the ARM System Bus (ASB) and the ARM
Peripheral Bus (APB). Later ARM introduced another bus design, called the ARM
High Performance Bus (AHB).

e Using AMBA, peripheral designers can reuse the same design on multiple projects. A
peripheral can simply be bolted on to the on-chip bus without having to redesign an
interface for each different processor architecture.

e ASB is a bidirectional bus design.

e APB is used with slower peripherals.

e AHB is based on a centralized multiplexed bus scheme, thus runs at higher clock
speeds and provides higher data through put. AHB bus is used for the high
performance peripherals.

Memory:

An embedded system has to have some form of memory to store and execute code. Cost,
performance, and power consumption are the parameters considered while deciding upon
specific memory characteristics, such as hierarchy, width, and type. Like if memory has to
run twice as fast to maintain a desired bandwidth, then the memory power requirement may
be higher.

e Hierarchy: Memory can be Cache, Main memory or Secondary memory.

The fastest memory cache is physically located nearer the ARM processor core and the
slowest secondary memory is set further away. Generally the closer memory is to the
processor core, the more it costs and the smaller its capacity. The cache is placed between
main memory and the core. It is used to speed up data transfer between the processor and
main memory. The main memory is large and is generally stored in separate chips. Load and
store instructions access the main memory unless the values have been stored in the cache for
fast access. Secondary storage is the largest and slowest form of memory. Hard disk drives
and CD-ROM drives are examples of secondary storage. Many small embedded systems do
not require the performance benefits of a cache.

e Width: The memory width is the number of bits the memory returns on each access—
typically 8, 16, 32, or 64 bits. The memory width has a direct effect on the overall
performance and cost ratio. If you have an un-cached system using 32-bit ARM
instructions and 16-bit-wide memory chips, then the processor will have to make two
memory fetches per instruction. Each fetch requires two 16-bit loads. This obviously has
the effect of reducing system performance, but the benefit is that 16-bit memory is less
expensive. In contrast, if the core executes 16-bit Thumb instructions, it will achieve
better performance with a 16-bit memory. The higher performance is a result of the core
making only a single fetch to memory to load an instruction. Hence, using Thumb

instructions with 16-bit-wide memory devices provides both improved performance and
reduced cost.
e Types: RAM or ROM
o Read only memory (ROM) is the least flexible of all memory types
because it contains an image that is permanently set at production time
and cannot be reprogrammed. ROMs are used in high-volume devices
that require no updates or corrections. Many devices also use a ROM
to hold boot code.
o Random Access memory (RAM)- SRAM,DRAM or SDRAM

Peripherals

Embedded systems that interact with the outside world need some form of peripheral device.
A peripheral device performs input and output functions for the chip by connecting to other
devices that are off-chip.

All ARM peripherals are memory mapped—the programming interface is a set of memory-
addressed registers. The address of these registers is an offset from a specific peripheral base
address.

Controllers are specialized peripherals that implement higher levels of functionality within an
embedded system. Two important types of controllers are memory controllers and interrupt
controllers. Memory controllers connect different types of memory to the processor bus. On
power-on a memory controller is configured in hardware to allow certain memory devices to
be active. These memory devices allow the initialization code to be executed. Some memory
devices must be set up by software.

An interrupt controller provides a programmable governing policy that allows software to
determine which peripheral or device can interrupt the processor at any specific time by
setting the appropriate bits in the interrupt controller registers. There are two types of
interrupt controller available for the ARM processor: the standard interrupt controller and the
vector interrupt controller (VIC). The standard interrupt controller sends an interrupt signal to
the processor core when an external device requests servicing. It can be programmed to
ignore or mask an individual device or set of devices. The VIC is more powerful than the
standard interrupt controller because it prioritizes interrupts and simplifies the determination
of which device caused the interrupt.

b. What is CPSR? Explain relevant bits

e The CPSR is a dedicated 32-bit register which resides in the register file.
e The ARM core uses the CPSR to monitor and control internal operations.

The Figure 8.b.1 shows the CPSR layout.

) Flags Status Extension Control
Felds ¢ it 4 i i
Bit 3130 22 7654 0
1111
NIZ|C 'i\' / ;I 1Tl Mode
Function “~—p—! T T
Condition Interrupt Processor
flags Masks mode

Thumb
state

Fig 8.b.1 CPSR Layout

The CPSR is divided into four fields, each 8bits wide: flags, status, extension and control.
In current designs the extension and status fields are reserved for future use.

Control Field: The control field contains the processor mode, state, and interrupt mask bits.

Processor Modes; The processor mode determines which registers are active and the access
rights to the CPSR register itself. The least significant 5 bits in the CPSR determines the

mode.

Each processor mode is either privileged or non-privileged.

A privileged mode allows full read-write access to the CPSR. Conversely, a non-
privileged mode only allows read access to the control field in the CPSR but still
allows read-write access to the condition flags.

There are seven processor modes in total: six privileged modes (abort, fast interrupt
request, interrupt request, supervisor, system, and undefined) and one non-privileged
mode (user).

The processor can change mode by either writing directly in to the control field (bO-
b4) when it is in a privileged mode or when exceptions or interrupts happens.

State and Instruction Sets: The state of the core determines which instruction set is being
executed. There are three instruction sets: ARM, Thumb, and Jazelle.

The ARM instruction set is only active when the processor is in ARM state. Similarly
the Thumb instruction set is only active when the processor is in Thumb state. Once in
Thumb state the processor is executing purely Thumb 16-bit instructions. Jazelle
executes 8-bit instructions and is a hybrid mix of software and hardware designed to
speed up the execution of Java bytecodes.

The Jazelle J (bit 24, which falls in flag field) and Thumb T bits in the CPSR reflect
the state of the processor.

e When both J and T bits are 0, the processor is in ARM state and executes ARM
instructions. If J=1 then the core is in Jazelle state and T=1 then the core is in Thumb
state.

Interrupt masks: ARMY7 entertains two kinds of hardware interrupts interrupt request (IRQ)
and fast interrupt request (FIQ). Bit 6 and Bit 7 of CPSR is used to mask these interrupt
requests.

e If I=1then IRQ is disabled and if F=1 FRQ is disabled.
e When processor mode changes the exception or interrupt handler makes IRQ bit 1 to
disable further interrupt requests.

Flags: The flags field contains the condition flags.

Some ARM processor cores have extra bits allocated. For example, the J bit (24), which can
be found in the flags field, is only available on Jazelle-enabled processors, which execute 8
bit java code.

The bits are described as given below along with condition to set the bits.

V-oVerflow: the result causes a signed overflow

C-Carry: the result causes an unsigned carry

Z- Zero: the result is zero, frequently used to indicate equality
N- Negative: bit 31 of the result is a binary 1

Q (bit 27)-Saturation: the result causes an overflow and/or saturation when extended
instructions are used. eg: QADD

Module 5
9. Module 5
a. Explain the following instruction of ARM with example:
SI No Instruction | Desciption Syntax Operation

Rd= IN(one's complement of
MVN Move negate MVN{SHcond} Rd, N N) N : unchanged
RSB Reverse Substract RSB{S}Hcond} Rd, Rn,N Rd=Rn+!N, Rn,N : unchanged
ORR Logical OR ORR{SHcond} Rd, Rn,N Rd=Rn+N Rn,N : unchanged
MLA Multiply and accumulate | MLA{cond}{S} Rd, Rm, Rs, Rn | Rd =(Rm#*Rs)+Rn

SMULL{condXS} RdLo, RdHi,
SMULL signed multiply long Rm, Rs [RdHi,RdLo]=Rm#Rs

load signed/unsigned
Byte/Halfword/Word

LDR into a register LDR{cond}{B} Rd,addressing | Rd <- mem[address]
swap a word between tmp=mem32[Rn]

SWP SWP{cond} Rd,Rm,[Rn] memory and a registe mem32[Rn]=Rm Rd=tmp
swap a byte between tmp=mem8[Rn]

SWPB SWPB{cond} Rd,Rm,[Rn] | memory and a registe mem8[Rn]=Rm Rd=tmp

b. Explain various formats of ADD instruction based on various operands of

ARMY

ADD{S}{cond} Rd, Rn, Operand2; Rd= Rn+operand?2
S-is an optional suffix. If S is specified, the condition code flags are updated on the

result of the operation.

Cond-is an optional condition code (see Conditional execution).

Rd-destination register
Rn- operandl register

Operand2- Can be a register, immediate value or barrel shifted register

Based on operand 2 various syntax are possible.
e ADD Rd, Rn, Rm ; Rd=Rn+Rm
e ADD Rd, Rn, #imm ; Rd= Rn+imm
e ADD Rd,Rn,Rm, LSL #2 ; Rd= Rn+(Logically shift left twice(Rm))

Example:

Pre
r2=0x5,r3=0x2
ADD r1,r2,r3
ADD r4,r2 #4

ADD r5,r2,r3,LSL #2

Post:

r2=0x5, r3=0x2, r1=0x7, r4=0x9, r5=0xD

c. Ifr5=5 and r7=8 and using the following instruction, write values of r5 and
r7 after execution of
MOV r7,r5,LSL#2

Post
r5=0x5
r7=0x14 (r7=20)

10.
a. Explain SWI instruction of ARM
A software interrupt instruction (SW1) causes a software interrupt exception. It provides a

mechanism for applications to call operating system routines, like

e Read or write operation on hard disc

e Parallel port printing

e Invoke Serial or parallel communication.

SWIs allow the Operating System to have a modular structure, which means that the code
required to create a complete operating system can be split up into a number of small
parts (modules) and a module handler.

When the SWI handler gets a request for a particular routine number it finds the position
of the routine and executes it, passing any data. No IRQ request is entertained while
executing SWI instruction.

When the processor executes an SWI instruction, it sets the program counter pc to the
offset 0x8 in the vector table. The instruction forces the processor mode to SVC, which
allows an operating system routine to be called in a privileged mode.

Syntax: SWI {<cond>} SWI_number

SWI number is used to represent a particular function call or feature.

The SWI number is determined by SWI_Number = <SWI instruction>AND NOT
(0xff000000); In the SWI instruction opcode the MSB two nibbles correspond to SWI
and the rest to the SWI_ Number.

A code called the SWI handler is required to process the SWI call. The handler fetches
SWI opcode using the address of the executed SWI instruction, which is calculated from
the link register content, to obtain the SWI number. On execution of SWI, the following
updates take place:

e LR_SVC=address of instruction following the SWI
PC=IVT_Base address+0x8

SPSR_SVC=CPSR
Putting the processor into Supervisor mode switches out 2 registers r13 and

r14 and replaces these with r13 svc and r14 svc.
CPSR mode=SVC CPSR I=1 (mask IRQ interrupts)

b. Explain the syntax of SWAP instruction of ARM7

The data swap instruction is used to swap a byte or word quantity between a register and
external memory. This instruction is implemented as a memory read followed by a
memory write which are “locked” together (the processor cannot be interrupted until both
operations have completed, and the memory manager is warned to treat them as
inseparable). This class of instruction is particularly useful for implementing software
semaphores.
The swap address is determined by the contents of the base register (Rn). The processor
first reads the contents of the swap address. Then it writes the contents of the source
register (Rm) to the swap address, and stores the old memory contents in the destination
register (Rd). The same register may be specified as both the source and destination.

Syntax {cond}{B} Rd,Rm,[Rn]

{cond} two-character condition mnemonic.

{B} if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

SWP R0O,R1,[R2] ; Load RO with the word addressed by R2, and ; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and ; store bits 0 to 7 of R3
at R4.

SWPEQ RO,R0,[R1] ; Conditionally swap the contents of the ; word addressed by R1 with
RO.

Example:

Pre

ro=0x2

r1=0x7

r3=0x9000
mem32[0x9000] = 0x10

SWP r0,r1,[r2]

Post

r0= mem32[0x9000] = 0x10
r1=0x7

mem32[0x9000] = 0x7

c. What are the salient features of ARM instruction set?
e All instructions are 32 bits long.
Most instructions execute in a single cycle.
Most instructions can be conditionally executed.
Three operand format
Combined ALU and shifter for high speed bit manipulation
32 bit, 16 bit and 8 bit data types.

e Flexible multiple register load and store instructions
e Instruction set extension via coprocessors
e A load/store architecture —
o Data processing instructions act only on registers
o Specific memory access instructions with powerful auto
-indexing addressing modes.

