




Solutions of Microprocessor and Microcontrollers (15CS44) - July2018 

Module 1 

1a. What is microprocessor? With a neat diagram explain the internal block diagram of 

8086 microprocessor along with functions of each block and registers.  

Ans: Microprocessor is an integrated circuit used in computer for computations.  

 



 

 

 

 



1b. What is an addressing mode ? List the addressing modes of 8086 microprocessor 

with one example each(any six modes). 

Ans: 

 



 

 



 



 

 

 



2a. What are the assembler directives? Explain the following directives. 

 

    Keywords which gives directions to assembler are called assembler directives. These are 

not converted to machine code.  

i.DB (DEFINE BYTE)  

The DB directive is used to declare a byte type variable, or a set aside one or more storage locations 

of type byte in memory.   

PRICES DB 49H, 98H, 29H  Declare array of 3 bytes named PRICE and initialize them with 

specified values.  

ii.ASSUME   

The ASSUME directive is used tell the assembler the name of the logical segment it should use for a 

specified segment. The statement ASSUME CS: CODE, for example, tells the assembler that the 

instructions for a program are in a logical segment named CODE. The statement ASSUME DS: 

DATA tells the assembler that for any program instruction, which refers to the data segment, it should 

use the logical segment called DATA. 

iii. OFFSET 

 OFFSET is an operator, which tells the assembler to determine the offset or displacement of a named 

data item (variable), a procedure from the start of the segment, which contains it. When the assembler 

reads the statement MOV BX, OFFSET PRICES, for example, it will determine the offset of the 

variable PRICES from the start of the segment in which PRICES is defined and will load this value 

into BX.  

iv.PTR (POINTER) 

 The PTR operator is used to assign a specific type to a variable or a label. It is necessary to do this in 

any instruction where the type of the operand is not clear. When the assembler reads the instruction 

INC [BX], for example, it will not know whether to increment the byte pointed to by BX. We use the 

PTR operator to clarify how we want the assembler to code the instruction. The statement INC BYTE 

PTR [BX] tells the assembler that we want to increment the byte pointed to by BX. The statement 

INC WORD PTR [BX] tells the assembler that we want to increment the word pointed to by BX. The 

PTR operator assigns the type specified before PTR to the variable specified after PTR. We can also 

use the PTR operator to clarify our intentions when we use indirect Jump instructions. The statement 

JMP [BX], for example, does not tell the assembler whether to code the instruction for a near jump. If 

we want to do a near jump, we write the instruction as JMP WORD PTR [BX]. If we want to do a far 

jump, we write the instruction as JMP DWORD PTR [BX]. 

 

2 b. What is the flag and flag register? Explain the format of flag register with a suitable 

example.  

 

    The 8086 PSW is 16 bits, but only 9 of its bits are used. Each bit of 8086 PSW is called a 

flag. 



 

 
2c. Write an assembly level program to sort of ‘n’ 16 bit –numbers in descending order. 

Use bubble sort algorithm to sort given elements. 

 
PROGRAM TO SORT THE NUMBERS IN DESCENDING ORDER 

 
DATA SEGMENT 

x DW 42H,34H,26H,17H,09H 

LEN EQU 05 

ASCD DB 10 DUP(0) 



DATA ENDS 

 

CODE SEGMENT 

ASSUME CS:CODE,DS:DATA 

 

START: MOV AX,DATA 

MOV DS,AX 

MOV BX,LEN-1 

MOV CX,BX 

UP1: MOV BX,CX 

LEA SI,X 

 

UP: MOV AX,[SI] 

MOV DX,[SI+2] 

CMP AX,DX 

JA DOWN 

MOV [SI],DX 

MOV [SI+2],AX 

 

DOWN: INC SI 

INC SI 

DEC BX 

JNZ UP 

DEC CX 

JNZ UP1 

MOV AH,4CH 

INT 21H 

CODE ENDS 

 

END START 

Module 2 
3a. Explain the following instructions with a suitable example.   

 

1.MOV – MOV Destination, Source  

      The MOV instruction copies a word or byte of data from a specified source to a specified 

destination. The destination can be a register or a memory location. The source can be a register, a 

memory location or an immediate number. The source and destination cannot both be memory 

locations. They must both be of the same type (bytes or words). MOV instruction does not affect any 

flag.  

MOV CX, 037AH        Put immediate number 037AH to CX  

MOV BL, [437AH]      Copy byte in DS at offset 437AH to BL  

MOV AX, BX               Copy content of register BX to AX  

MOV DL, [BX]             Copy byte from memory at [BX] to DL  

 MOV DS, BX         Copy word from BX to DS register  

 MOV RESULT [BP], AX       Copy AX to two memory locations; AL to the first location, AH to the  

second; EA of the first memory location is sum of the displacement represented by RESULTS and 

content of BP. Physical address = EA + SS.  

MOV ES: RESULTS [BP], AX           Same as the above instruction, but physical address = EA + ES, 

because of the segment override prefix ES 



2. 

 
 

3 

 
4. 

 



5. 

 
6.CMP – CMP Destination, Source  

       This instruction compares a byte / word in the specified source with a byte / word in the specified 

destination. The source can be an immediate number, a register, or a memory location. The 

destination can be a register or a memory location. However, the source and the destination cannot 

both be memory locations. The comparison is actually done by subtracting the source byte or word 

from the destination byte or word. The source and the destination are not changed, but the flags are set 

to indicate the results of the comparison. AF, OF, SF, ZF, PF, and CF are updated by the CMP 

instruction. For the instruction CMP CX, BX, the values of CF, ZF, and SF will be as follows: 

 

Ex:    CMP AL, 01H          Compare immediate number 01H with byte in AL 

 

7. DAA (DECIMAL ADJUST AFTER BCD ADDITION)  

      This instruction is used to make sure the result of adding two packed BCD numbers is adjusted to 

be a legal BCD number. The result of the addition must be in AL for DAA to work correctly. If the 

lower nibble in AL after an addition is greater than 9 or AF was set by the addition, then the DAA 

instruction will add 6 to the lower nibble in AL. If the result in the upper nibble of AL in now greater 

than 9 or if the carry flag was set by the addition or correction, then the DAA instruction will add 60H 

to AL.  

 Let AL = 59 BCD, and BL = 35 BCD  

ADD AL, BL   AL = 8EH; lower nibble > 9, add 06H to AL 

 DAA    AL = 94 BCD, CF = 0 
 

8. TEST – TEST Destination, Source  

      This instruction ANDs the byte / word in the specified source with the byte / word in the specified 

destination. Flags are updated, but neither operand is changed. The test instruction is often used to set 

flags before a Conditional jump instruction. The source can be an immediate number, the content of a 

register, or the content of a memory location. The destination can be a register or a memory location. 

The source and the destination cannot both be memory locations. CF and OF are both 0’s after TEST. 

PF, SF and ZF will be updated to show the results of the destination. AF is be undefined.  

 TEST AL, BH   AND BH with AL. No result stored; Update PF, SF, ZF.   

TEST CX, 0001H  AND CX with immediate number 0001H; No result stored; Update PF, SF, 

ZF  

 



 

3b.What is an interrupt. ?Explain various types with an interrupt vector table. 

Ans: 
 

 
 



 
 

 





 

  

 

 

 

4a.Explain the following instructions with a suitable example:. 

 



 

ii. 

 
 

iii. 

 



iv. 

 
v. 

 
vi. 

 



vii. 

 
viii. 

 
4 b. Explain rotate instructions with an example.  

Ans: 

 

 



 

 
 

 

 



Module 3 

5a. With example , explain how to identify overflow using flags in a flag register for 

performing an arithmetic operation on 16 bit numbers. 

 

Ans: 

 



 
 



 

5b. Explain 74138 decoder configuration to enable the memory address 08000 H to 0FFFF H 

to connect four 8k RAMS. 

 

Ans. 

 
 

 

 

 

 



6.  

a. Briefly explain the control word format of 8255 in I/O and BSR mode. Find 

the control word if PA=o/p, PB =i/p, PCL=i/p, PCU=o/p. Use port address of 

300h-303H and write a program to read from port A and send to Port B. 

 

8255 
The 8255 is a 40-pin DIP chip. It has three separately accessible ports. The ports are 
each 8-bit, and are named A, B, and C. The individual ports of the 8255 can be 
programmed to be input or output, and can be changed dynamically. In addition, 
8255 ports, have handshaking capability, thereby allowing interface with devices 
needs handshaking signals, such as printers. 
Mode selection of the 8255 
While ports A, B, and C are used to input or output data, it is the control register that 
must be programmed to select the operation mode of the three ports. The ports of 
the 8255 can be programmed in any of the following modes. 
1. Mode 0, simple I/O mode. In this mode, any of the ports A, B, CL, and CU can 

be programmed as input or output. In this mode, all bits are out or all are in. In 
other words, there is no such thing as single-bit control as we have seen in 
PO – P3 of the 8051. Since the vast majority of applications involving the 8255 
use this simple I/O mode, we will concentrate on this mode in this chapter. 

2. Mode 1. In this mode, ports A and B can be used as input or output ports with 
handshaking capabilities. Handshaking signals are provided by the bits of port 
C. 

3. Mode 2. In this mode, port A can be used as a bidirectional I/O port with hand 
shaking capabilities whose signals are provided by port C. Port B can be used 
either in simple I/O mode or handshaking mode 1. 

4. BSR (bit set/reset) mode. In this mode, only the individual bits of port C can 
be programmed. 

 
 
The 8255 chip is programmed in any of the 4 modes mentioned by sending a byte to the 

control register of the 8255. We must first find the port addresses assigned to each of ports 

A, B, C, and the control register. This is called mapping the I/O port. 

Instructions for input and output port transfer 

 IN − Used to read a byte from the provided port to the accumulator. 

 OUT − Used to send out a byte from the accumulator to the provided port. 

  

 

Control Word register format: 

I/O mode 



 

 

BSR Mode 

 

 

 

Control word if PA=o/p, PB =i/p, PCL=i/p, PCU=o/p 

CONTROL WORD: 10000011 = 83H 

 

Control word if PA=i/p, PB =0/p, PC=o/p 



CONTROL WORD: 10010000 = 90H 

 

.MODEL SMALL 

.STACK 100 

.DATA 

PA EQU 300H 

PB EQU 301H 

CT EQU 303H 

.CODE 

MOV AX, @DATA 

MOV DS, AX 

MOV DX, CT 

MOV AL, 90H 

OUT DX, AL 

MOV DX, PA 

IN AL, DX 

MOV DX, PB 

OUT DX, AL 

MOV AH, 4CH 

INT 21H 

END 

 

 

 

 

b. Write an ALP to read PB and check the number of ones in an 8 bit data. Put 

FFH on Port A if it is even parity else display 00 on port A. 

 

Control word if PA=o/p, PB =i/p, PC=o/p 



CONTROL WORD: 10000010 = 82H 

 

.MODEL SMALL 

.STACK 100 

.DATA 

PA EQU 300H 

PB EQU 301H 

CT EQU 303H 

.CODE 

MOV AX, @DATA 

MOV DS, AX 

MOV DX, CT 

MOV AL, 82H 

OUT DX, AL 

MOV DX, PB 

IN AL, DX 

; check the number of ones 

MOV CX,8 

MOV BL,00 

BACK:SHR AL,1 

JNC ZERO 

INC BL; Number of ones 

ZERO:LOOP BACK 

SHR BL,1 ;check number of ones even number or not 

JNC DISP 

MOV AL,00H 



JMP LAST 

DISP:MOV AL,0FFH 

LAST:MOV DX, PA 

OUT DX, AL 

MOV AH, 4CH 

INT 21H 

END 

MODULE 4 

7. Module 4  

a. Compare CISC with RISC 

The RISC (Reduced Instruction Set Computer) philosophy concentrates on reducing the 

complexity of instructions performed by the hardware because it is easier to provide greater 

flexibility and intelligence in software rather than hardware. As a result, a RISC design places 

greater demands on the compiler. In contrast, the traditional complex instruction set computer 

(CISC) relies more on the hardware for instruction functionality, and consequently the CISC 

instructions are more complicated 

Instructions—RISC processors have a reduced number of instruction classes. These classes 

provide simple operations that can each execute in a single cycle. The compiler or 

programmer synthesizes complicated operations (for example, a divide operation) by 

combining several simple instructions. Each instruction is a fixed length to allow the pipeline 

to fetch future instructions before decoding the current instruction. In contrast, in CISC 

processors the instructions are often of variable size and take many cycles to execute. 

 

Pipelines— The processing of instructions is broken down into smaller units that can be 

executed in parallel by pipelines. Ideally the pipeline advances by one step on each cycle for 

maximum throughput. Instructions can be decoded in one pipeline stage. There is no need for 

an instruction to be executed by a mini program called microcode as on CISC processors. 

 

Registers—RISC machines have a large general-purpose register set. Any register can 

contain either data or an address. Registers act as the fast local memory store for all data 

processing operations. In contrast, CISC processors have dedicated registers for specific 

purposes. 

 

Load-store architecture—The processor operates on data held in registers. Separate load 

and store instructions transfer data between the register bank and external memory. Memory 

accesses are costly, so separating memory accesses from data processing provides an 

advantage because you can use data items held in the register bank multiple times without 

needing multiple memory accesses. In contrast, with a CISC design the data processing 

operations can act on memory directly. 

 



Hardware complexity- RISC emphasizes on software complexity while CISC emphasizes 

on hardware complexity 

 
 

 

 

b. Explain registers used under various modes. 

Processor Modes: The processor mode determines which registers are active and the access 

rights to the CPSR register itself.  The least significant 5 bits in the CPSR determines the 

mode.  Each processor mode is either privileged or non-privileged. 

  A privileged mode allows full read-write access to the CPSR. Conversely, a non-

privileged mode only allows read access to the control field in the CPSR but still 

allows read-write access to the condition flags.  

 There are seven processor modes in total: six privileged modes (abort, fast interrupt 

request, interrupt request, supervisor, system, and undefined) and one non-privileged 

mode (user). 

 The processor can change mode by either writing directly in to the control field (b0-

b4) when it is in a privileged mode or when exceptions or interrupts happens. 

 The following exceptions and interrupts cause a mode change: reset, interrupt 

request, fast interrupt request, software interrupt, data abort, prefetch abort, and 

undefined instruction. Exceptions and interrupts suspend the normal execution of 

sequential instructions and jump to a specific location. 

 

The processor enters  

 abort mode when there is a failed attempt to access memory.  

 Fast interrupt request and interrupt request modes correspond to the two interrupt 

levels available.  

 Supervisor mode is the mode that the processor is in after reset and is generally the 

mode that an operating system kernel operates in. 

  System mode is a special version of user mode that allows full read-write access to 

the cpsr.  

 Undefined mode when the processor encounters an instruction that is undefined or not 

supported by the implementation.  

 User mode is used for programs and applications. 

 



Banked Registers 

 

All processor modes except system mode have a set of associated banked registers that are a 

subset of the main 16 registers. A banked register maps one-to one onto a user mode register. 

If the processor mode changes change processor mode, a banked register from the new mode 

will replace an existing register. 

 

Banked registers of a particular mode are denoted by an underline character post-fixed to the 

mode 

Mnemonic or _mode. 

 

 
Fig 7.b.1 banked registers 

 

Figure 7.b.1 shows all 37 registers in the register file. Of those, 20 registers are hidden from a 

program at different times. These registers are called banked registers. They are available 

only when the processor is in a particular mode. 

For example, when the processor is in the interrupt request mode, the instructions user 

execute still access registers named r13 and r14. However, these registers are the banked 

registers r13_irq and r14_irq. The user mode registers r13_usr and r14_usr are not affected by 

the instruction referencing these registers. A program still has normal access to the other 

registers r0 to r12.  

 

 The r14_irq contains the return address and r13_irq contains the stack pointer for 

interrupt request mode, the cpsr_usr will be copied into spsr_irq.  

 



 To return back to user mode, a special return instruction is used that instructs the core 

to restore the original cpsr from the spsr_irq and bank in the user registers r13 and 

r14. 

 

 Another important feature is that the cpsr is not copied into the spsr when a mode 

change is forced due to a program writing directly to the cpsr. The saving of the cpsr 

only occurs when an exception or interrupt is raised. 

 

c. Explain ARM core dataflow model 

 

A programmer can think of an ARM core as functional units connected by data buses, as 

shown in Figure 7.c.1, where, the arrows represent the flow of data, the lines represent the 

buses, and the boxes represent either an operation unit or a storage area.  This model is 

called data flow model or programmers view of architecture. 

 
Fig 7.c.1 ARM core data flow model (Von Neumann Model) 

 

 Data enters the processor core through the Data bus. The data may be an 

instruction to execute or a data item. The instruction decoder translates 

instructions before they are executed. Each instruction executed belongs to a 

particular instruction set. 

 The ARM processor uses a load-store architecture. This means it has two 

instruction types for transferring data in and out of the processor: load instructions 

copy data from memory to registers in the core, and conversely the store 

instructions copy data from registers to memory.  

 There are no data processing instructions that directly manipulate data in memory. 

Thus, data processing is carried out solely in registers. 

 Data items are placed in the register file—a storage bank made up of 32-bit 

registers. 



 Since the ARM7 core is a 32-bit processor, most instructions treat the registers as 

holding signed or unsigned 32-bit values. The sign extend hardware converts 

signed 8-bit and 16-bit numbers to 32-bit values as they are read from memory 

and placed in a register.  

 ARM instructions typically have two source registers, Rn and Rm, and a single 

result or destination register, Rd. Source operands are read from the register file 

using the internal buses A and B, respectively. 

 The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the 

register values Rn and Rm from the A and B buses and computes a result. Data 

processing instructions write the result in Rd directly to the register file.  

 Load and store instructions use the ALU to generate an address to be held in the 

address register and broadcast on the Address bus.  

 One important feature of the ARM is that register Rm alternatively can be pre-

processed in the barrel shifter before it enters the ALU. Together the barrel shifter 

and ALU can calculate a wide range of expressions and addresses.  

 After passing through the functional units, the result in Rd is written back to the 

register file using the Result bus. 

  For load and store instructions the incrementer updates the address register before 

the core reads or writes the next register value from or to the next sequential 

memory location.  

 

 

Registers 

General-purpose registers are identified with the letter r prefixed to the register number. For 

example, register 1is given the label r1.There are up to 18 active registers: 16 data registers 

and 2 processor status registers. The data registers are visible to the programmer as r0 to r15. 

 

Three registers are assigned with special function: 

 

 Register r13 is traditionally used as the stack pointer (sp) and stores the head of the 

stack in the current processor mode. 

 Register r14 is called the link register (lr) and is where the core puts the return address 

whenever it calls a subroutine. 

 Register r15 is the program counter (pc) and contains the address of the next 

instruction to be fetched by the processor. 

 In addition to the 16 data registers, there are two program status registers: cpsr 

(current PSR) and spsr (Saved PSR).  

 The register file contains all the registers available to a programmer. Which registers 

are visible to the programmer depend upon the current mode of the processor. 

 

 

The registers r0 to r13 are orthogonal—any instruction that you can apply to r0 you can 

equally well apply to any of the other registers. However, there are instructions that treat r14 

and r15 in a special way. 

 

8.  
a. Explain the architecture of typical embedded device based in ARM core 

with a neat diagram. 



 

Embedded systems can control many different devices, from small sensors found on a 

production line, to the real-time control systems used on a NASA space probe. All these 

devices use a combination of software and hardware components. Each component is chosen 

for efficiency and, if applicable, is designed for future extension and expansion. 

Embedded System Hardware: 

 

 

Figure 8.a.1 ARM based embedded device 

Figure 8.a.1 shows a typical embedded device based on an ARM core. We can separate the 

device into four main hardware components: 

1. The ARM processor controls the embedded device. Different versions of the ARM 

processor are available to suit the desired operating characteristics. An ARM 

processor comprises a core (the execution engine that processes instructions and 

manipulates data) plus the surrounding components that interface it with a bus. These 

components can include memory management and caches.  

2. Controllers coordinate important functional blocks of the system. Two commonly 

found controllers are interrupt and memory controllers.  

3. The peripherals provide all the input-output capability external to the chip and are 

responsible for the uniqueness of the embedded device. 

4. A bus is used to communicate between different parts of the device. 

ARM Bus Technology: embedded devices use an on-chip bus that is internal to the chip and 

that allows different peripheral devices to be interconnected with an ARM core.  

 

There are two different classes of devices attached to the bus. The ARM processor core is a 

bus master—a logical device capable of initiating a data transfer with another device across 



the same bus. Peripherals tend to be bus slaves—logical devices capable only of responding 

to a transfer request from a bus master device. 

 AMBA Bus Protocol: The Advanced Microcontroller Bus Architecture (AMBA) has 

been widely adopted as the on-chip bus architecture used for ARM processors. The 

first AMBA buses introduced were the ARM System Bus (ASB) and the ARM 

Peripheral Bus (APB). Later ARM introduced another bus design, called the ARM 

High Performance Bus (AHB). 

 Using AMBA, peripheral designers can reuse the same design on multiple projects. A 

peripheral can simply be bolted on to the on-chip bus without having to redesign an 

interface for each different processor architecture. 

 ASB is a bidirectional bus design. 

 APB is used with slower peripherals. 

 AHB is based on a centralized multiplexed bus scheme, thus runs at higher clock 

speeds and provides higher data through put. AHB bus is used for the high 

performance peripherals. 

 

Memory: 

An embedded system has to have some form of memory to store and execute code.  Cost, 

performance, and power consumption are the parameters considered while deciding upon 

specific memory characteristics, such as hierarchy, width, and type. Like if memory has to 

run twice as fast to maintain a desired bandwidth, then the memory power requirement may 

be higher.  

 Hierarchy:  Memory can be Cache, Main memory or Secondary memory. 

 

The fastest memory cache is physically located nearer the ARM processor core and the 

slowest secondary memory is set further away. Generally the closer memory is to the 

processor core, the more it costs and the smaller its capacity. The cache is placed between 

main memory and the core. It is used to speed up data transfer between the processor and 

main memory. The main memory is large and is generally stored in separate chips. Load and 

store instructions access the main memory unless the values have been stored in the cache for 

fast access. Secondary storage is the largest and slowest form of memory. Hard disk drives 

and CD-ROM drives are examples of secondary storage. Many small embedded systems do 

not require the performance benefits of a cache. 

 

 Width: The memory width is the number of bits the memory returns on each access—

typically 8, 16, 32, or 64 bits. The memory width has a direct effect on the overall 

performance and cost ratio. If you have an un-cached system using 32-bit ARM 

instructions and 16-bit-wide memory chips, then the processor will have to make two 

memory fetches per instruction. Each fetch requires two 16-bit loads. This obviously has 

the effect of reducing system performance, but the benefit is that 16-bit memory is less 

expensive. In contrast, if the core executes 16-bit Thumb instructions, it will achieve 

better performance with a 16-bit memory. The higher performance is a result of the core 

making only a single fetch to memory to load an instruction. Hence, using Thumb 



instructions with 16-bit-wide memory devices provides both improved performance and 

reduced cost. 

 Types: RAM or ROM 

o Read only memory (ROM) is the least flexible of all memory types 

because it contains an image that is permanently set at production time 

and cannot be reprogrammed. ROMs are used in high-volume devices 

that require no updates or corrections. Many devices also use a ROM 

to hold boot code. 

o Random Access memory (RAM)- SRAM,DRAM or SDRAM 

Peripherals 

Embedded systems that interact with the outside world need some form of peripheral device. 

A peripheral device performs input and output functions for the chip by connecting to other 

devices that are off-chip. 

All ARM peripherals are memory mapped—the programming interface is a set of memory-

addressed registers. The address of these registers is an offset from a specific peripheral base 

address. 

Controllers are specialized peripherals that implement higher levels of functionality within an 

embedded system. Two important types of controllers are memory controllers and interrupt 

controllers. Memory controllers connect different types of memory to the processor bus. On 

power-on a memory controller is configured in hardware to allow certain memory devices to 

be active. These memory devices allow the initialization code to be executed. Some memory 

devices must be set up by software. 

An interrupt controller provides a programmable governing policy that allows software to 

determine which peripheral or device can interrupt the processor at any specific time by 

setting the appropriate bits in the interrupt controller registers. There are two types of 

interrupt controller available for the ARM processor: the standard interrupt controller and the 

vector interrupt controller (VIC). The standard interrupt controller sends an interrupt signal to 

the processor core when an external device requests servicing. It can be programmed to 

ignore or mask an individual device or set of devices. The VIC is more powerful than the 

standard interrupt controller because it prioritizes interrupts and simplifies the determination 

of which device caused the interrupt. 

 

 

 

b. What is CPSR? Explain relevant bits 

 

 The CPSR is a dedicated 32-bit register which resides in the register file.  

 The ARM core uses the CPSR to monitor and control internal operations.  



 

The Figure 8.b.1 shows the CPSR layout.  

 

 

Fig 8.b.1 CPSR Layout 

The CPSR is divided into four fields, each 8bits wide: flags, status, extension and control. 

In current designs the extension and status fields are reserved for future use.  

Control Field: The control field contains the processor mode, state, and interrupt mask bits.  

Processor Modes: The processor mode determines which registers are active and the access 

rights to the CPSR register itself.  The least significant 5 bits in the CPSR determines the 

mode.  

Each processor mode is either privileged or non-privileged. 

  A privileged mode allows full read-write access to the CPSR. Conversely, a non-

privileged mode only allows read access to the control field in the CPSR but still 

allows read-write access to the condition flags.  

 There are seven processor modes in total: six privileged modes (abort, fast interrupt 

request, interrupt request, supervisor, system, and undefined) and one non-privileged 

mode (user). 

 The processor can change mode by either writing directly in to the control field (b0-

b4) when it is in a privileged mode or when exceptions or interrupts happens. 

State and Instruction Sets: The state of the core determines which instruction set is being 

executed. There are three instruction sets: ARM, Thumb, and Jazelle.  

 The ARM instruction set is only active when the processor is in ARM state. Similarly 

the Thumb instruction set is only active when the processor is in Thumb state. Once in 

Thumb state the processor is executing purely Thumb 16-bit instructions. Jazelle 

executes 8-bit instructions and is a hybrid mix of software and hardware designed to 

speed up the execution of Java bytecodes.  

 The Jazelle J (bit 24, which falls in flag field) and Thumb T bits in the CPSR reflect 

the state of the processor.  



 When both J and T bits are 0, the processor is in ARM state and executes ARM 

instructions. If J=1 then the core is in Jazelle state and T=1 then the core is in Thumb 

state. 

Interrupt masks:  ARM7 entertains two kinds of hardware interrupts interrupt request (IRQ) 

and fast interrupt request (FIQ). Bit 6 and Bit 7 of CPSR is used to mask these interrupt 

requests. 

 If I=1 then IRQ is disabled and if F=1 FRQ is disabled. 

 When processor mode changes the exception or interrupt handler makes IRQ bit 1 to 

disable further interrupt requests. 

 

Flags: The flags field contains the condition flags.  

Some ARM processor cores have extra bits allocated. For example, the J bit (24), which can 

be found in the flags field, is only available on Jazelle-enabled processors, which execute 8 

bit java code. 

The bits are described as given below along with condition to set the bits. 

 

V-oVerflow: the result causes a signed overflow  

C-Carry: the result causes an unsigned carry  

Z- Zero: the result is zero, frequently used to indicate equality 

N- Negative: bit 31 of the result is a binary 1 

Q (bit 27)-Saturation: the result causes an overflow and/or saturation when extended 

instructions are used. eg: QADD 

Module 5 

9. Module 5 

a. Explain the following instruction of ARM with example: 

Sl No Instruction Desciption Syntax Operation 

1 MVN Move negate MVN{S}{cond} Rd, N 
Rd= !N(one's complement of 
N)          N : unchanged     

2 RSB Reverse Substract RSB{S}{cond} Rd, Rn,N Rd=Rn+!N , Rn,N : unchanged  

3 ORR Logical OR ORR{S}{cond} Rd, Rn,N Rd=Rn+N Rn,N : unchanged  

4 MLA Multiply and accumulate MLA{cond}{S} Rd, Rm, Rs, Rn  Rd =(Rm∗Rs)+Rn 

5 SMULL  signed multiply long 
 SMULL{cond}{S} RdLo, RdHi, 
Rm, Rs  [RdHi,RdLo]=Rm∗Rs 



6 LDR 

 load signed/unsigned 
Byte/Halfword/Word  
into a register  LDR{cond}{B} Rd,addressing  Rd <- mem[address] 

7 SWP  SWP{cond} Rd,Rm,[Rn] 
swap a word between 
memory and a registe 

 tmp=mem32[Rn] 
mem32[Rn]=Rm Rd=tmp 

8 SWPB  SWPB{cond} Rd,Rm,[Rn] 
 swap a byte between 
memory and a registe 

  tmp=mem8[Rn] 
mem8[Rn]=Rm Rd=tmp 

 

 

b. Explain various formats of ADD instruction based on various operands of 

ARM7 

 

ADD{S}{cond} Rd, Rn, Operand2; Rd= Rn+operand2 

S-is an optional suffix. If S is specified, the condition code flags are updated on the 

result of the operation. 

 

Cond-is an optional condition code (see Conditional execution). 

 

Rd-destination register 

Rn- operand1 register 

Operand2- Can be a register, immediate value or barrel shifted register 

 

Based on operand 2 various syntax are possible. 

 ADD Rd, Rn, Rm ; Rd= Rn+Rm 

 ADD Rd, Rn, #imm ; Rd= Rn+imm 

 ADD Rd,Rn,Rm, LSL #2 ; Rd= Rn+(Logically shift left twice(Rm)) 

 

Example: 

Pre 

r2=0x5,r3=0x2  

ADD r1,r2,r3  

ADD r4,r2,#4  

ADD r5,r2,r3,LSL #2 

 

Post: 

r2=0x5, r3=0x2, r1=0x7, r4=0x9, r5=0xD 

 



c. If r5=5 and r7=8 and using the following instruction, write values of r5 and 

r7 after execution of  

     MOV r7,r5,LSL#2 

 

Post 

r5=0x5 

r7=0x14 (r7=20) 

 

10.  

a. Explain SWI instruction of ARM 

A software interrupt instruction (SWI) causes a software interrupt exception. It provides a 

mechanism for applications to call operating system routines, like 

  Read or write operation on hard disc  

 Parallel port printing 

  Invoke Serial or parallel communication. 

SWIs allow the Operating System to have a modular structure, which means that the code 

required to create a complete operating system can be split up into a number of small 

parts (modules) and a module handler.  

When the SWI handler gets a request for a particular routine number it finds the position 

of the routine and executes it, passing any data. No IRQ request is entertained while 

executing SWI instruction. 

 

 When the processor executes an SWI instruction, it sets the program counter pc to the 

offset 0x8 in the vector table. The instruction forces the processor mode to SVC, which 

allows an operating system routine to be called in a privileged mode.  

 

Syntax: SWI {<cond>} SWI_number  

 SWI number is used to represent a particular function call or feature.  

The SWI number is determined by SWI_Number = <SWI instruction>AND NOT 

(0xff000000); In the SWI instruction opcode the MSB two nibbles correspond to SWI 

and the rest to the SWI_ Number.  

 

A code called the SWI handler is required to process the SWI call. The handler fetches 

SWI opcode using the address of the executed SWI instruction, which is calculated from 

the link register content, to obtain the SWI number. On execution of SWI, the following 

updates take place: 

 LR_SVC=address of instruction following the SWI  

 PC= IVT_Base address+0x8  

 SPSR_SVC=CPSR  

Putting the processor into Supervisor mode switches out 2 registers r13 and 

r14 and replaces these with r13_svc and r14_svc. 

 CPSR mode=SVC CPSR I=1 (mask IRQ interrupts) 

 

b. Explain the syntax of SWAP instruction of ARM7 



The data swap instruction is used to swap a byte or word quantity between a register and 

external memory. This instruction is implemented as a memory read followed by a 

memory write which are “locked” together (the processor cannot be interrupted until both 

operations have completed, and the memory manager is warned to treat them as 

inseparable). This class of instruction is particularly useful for implementing software 

semaphores. 

 The swap address is determined by the contents of the base register (Rn). The processor 

first reads the contents of the swap address. Then it writes the contents of the source 

register (Rm) to the swap address, and stores the old memory contents in the destination 

register (Rd). The same register may be specified as both the source and destination. 

Syntax {cond}{B} Rd,Rm,[Rn]  

{cond} two-character condition mnemonic.  

{B} if B is present then byte transfer, otherwise word transfer  

Rd,Rm,Rn are expressions evaluating to valid register numbers 

 

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and ; store R1 at R2.  

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and ; store bits 0 to 7 of R3 

at R4.  

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the ; word addressed by R1 with 

R0. 

 

Example: 

Pre 

 r0=0x2 

 r1=0x7 

r3=0x9000 

mem32[0x9000] = 0x10 

 

SWP r0,r1,[r2] 

 

Post 

 r0= mem32[0x9000] = 0x10 

r1=0x7 

mem32[0x9000] = 0x7 

 

 

 

c. What are the salient features of ARM instruction set? 

 All instructions are 32 bits long.  

  Most instructions execute in a single cycle.  

  Most instructions can be conditionally executed. 

 Three operand format 

 Combined ALU and shifter for high speed bit manipulation  

 32 bit, 16 bit and 8 bit data types.  



  Flexible multiple register load and store instructions  

  Instruction set extension via coprocessors 

 A load/store architecture –  

o Data processing instructions act only on registers  

o Specific memory access instructions with powerful auto 

‐indexing addressing modes. 

 

 


