VTU Sixth semester BE Degree Examination June/July 2018
CBCS Scheme: Operating Systems
Solutions
Module 1
1. a. Define Operating system. With a neat diagram explain the dual mode operation of operating system.
An operating system is a program that manages the computer hardware. It also provides a basis for application programs and acts as an intermediary between the computer user and the computer hardware.
· There are two separate modes of operation: user mode and kernel mode (also called supervisor mode, system mode, or privileged mode).
· A bit, called the mode bit, is added to the hardware of the computer to indicate the current mode: kernel (0) or user (1). With the mode bit, we are able to distinguish between a task that is executed on behalf of the operating system and one that is executed on behalf of the user.
· When the computer system is executing on behalf of a user application, the system is in user mode.
· However, when a user application requests a service from the operating system (via a system call), it must transition from user to kernel mode to fulfil the request.
[image:]
· At system boot time, the hardware starts in kernel mode.
· The operating system is then loaded and starts user applications in user mode.
· Whenever a trap or interrupt occurs, the hardware switches from user mode to kernel mode (that is, changes the state of the mode bit to 0).
· Whenever the operating system gains control of the computer, it is in kernel mode.
· The system always switches to user mode (by setting the mode bit to 1) before passing control to a user program.
· The dual mode of operation provides us with the means for protecting the operating system from errant users—and errant users from one another.
· The hardware allows privileged instructions to be executed only in kernel mode.
· If an attempt is made to execute a privileged instruction in user mode, the hardware does not execute the instruction but rather treats it as illegal and traps it to the operating system.

b. Explain the services of operating system that are helpful for user and the system.

User:
• User interface (UI). Interface between user and the system.
· Command-line interface (CLI), uses text commands and a method for entering them (entering and editing of commands).
· Batch interface, in which commands and directives to control those commands are entered into files, and those files are executed.
· Graphical user interface (GUI) is used where, the interface is a window system with a pointing device to direct I/O, choose from menus, and make selections and a keyboard to enter text. Some systems provide two or all three of these variations.
• Program execution. The system must be able to load a program into memory and to run that program. The program must be able to end its execution, either normally or abnormally (indicating error).
• I/O operations. A running program may require I/O, which may involve a file or an I/O device. For specific devices, special functions may be desired (such as recording to a CD or DVD drive or blanking a CRT screen). For efficiency and protection, users usually cannot control I/O devices directly. Therefore, the operating system must provide a means to do I/O.
• File-system manipulation. The file system is of particular interest. Obviously, programs need to read and write files and directories. They also need to create and delete them by name, search for a given file, and list file information. Finally, some programs include permissions management to allow or deny access to files or directories based on file ownership.
• Communications. Communication may occur between processes that are executing on the same computer or between processes that are executing on different computer systems tied together by a computer network. Communications may be implemented via shared memory or through message passing, in which packets of information are moved between processes by the operating system.
• Error detection. The operating system needs to be constantly aware of possible errors. Errors may occur in the CPU and memory hardware (such as a memory error or a power failure), in I/O devices (such as a parity error on tape, a connection failure on a network, or lack of paper in the printer), and in the user program (such as an arithmetic overflow, an attempt to access an illegal memory location, or a too-great use of CPU time). For each type of error, the operating system should take the appropriate action to ensure correct and consistent computing. Debugging facilities can greatly enhance the user's and programmer's abilities to use the system efficiently.

System:
Resource allocation. When there are multiple users or multiple jobs running at the same time, resources must be allocated to each of them. Many different types of resources are managed by the operating system. Some (such as CPU cycles, main memory, and file storage) may have special allocation code, whereas others (such as I/O devices) may have much more general request and release code. For instance, in determining how best to use the CPU, operating systems have CPU-scheduling routines that take into account the speed of the CPU, the jobs that must be executed, the number of registers available, and other factors. There may also be routines to allocate printers, modems, USB storage drives, and other peripheral devices.
Accounting. We want to keep track of which users use how much and what kinds of computer resources. This record keeping may be used for accounting (so that users can be billed) or simply for accumulating usage statistics. Usage statistics may be a valuable tool for researchers who wish to reconfigure the system to improve computing services.
Protection and security. The owners of information stored in a multiuser or networked computer system may want to control use of that information.
· Protection involves ensuring that all access to system resources is controlled.
· Security of the system from outsiders is also important. Such security starts with requiring each user to authenticate himself or herself to the system, usually by means of a password, to gain access to system resources. It extends to defending external I/O devices, including modems and network adapters, from invalid access attempts and to recording all such connections for detection of break-ins.
· If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as strong as its weakest link.

c. Define the following terms:
(i) Virtual Machine
The layered approach described is taken to its logical conclusion in the concept of a virtual machine. The fundamental idea behind a virtual machine is to abstract the hardware of a single computer (the CPU, memory, disk drives, network interface cards, and so forth) into several different execution environments, thereby creating the illusion that each separate execution environment is running its own private computer. The VM provides an interface that is identical to the underlying bare hardware. Each process is provided with a (virtual) copy of the underlying computer

(ii) CPU scheduler
The short-term scheduler, or CPU scheduler, selects from among the processes that are ready to execute and allocates the CPU to one of them. The short-term scheduler selects a new process for the CPU frequently. A process may execute for only a few milliseconds before waiting for an I/O request.

(iii) System call
System calls provide an interface to the services made available by an operating system. These calls are generally available as routines written in C and C++, although certain low-level tasks (for example, tasks where hardware must be accessed directly), may need to be written using assembly-language instructions.

(iv) Context switch
Switching the CPU to another process requires performing a state save of the current process and a state restore of a different process. This task is known as a context switch. When a context switch occurs, the kernel saves the context of the old process in its PCB and loads the saved context of the new process scheduled to run.

2. a. With a neat diagram, explain the different states of a process.
A process is a program in execution. Process is an active entity, with a program counter specifying the next instruction to execute and a set of associated resources. A program becomes a process when an executable file is loaded into memory.
New. The process is being created.
Running. Instructions are being executed.
Waiting. The process is waiting for some event to occur (such as an I/O completion or reception of a signal).
Ready. The process is waiting to be assigned to a processor.
Terminated. The process has finished execution.
[image: Image result for process state diagram]

b. Explain the layered approach of operating system structure, with supporting diagram.

[image:]
· The main advantage of the layered approach is simplicity of construction and debugging.

· The layers are selected so that each uses functions (operations) and services of only lower-level layers. This approach simplifies debugging and system verification.

· The first layer can be debugged without any concern for the rest of the system, because, by definition, it uses only the basic hardware (which is assumed correct) to implement its functions.

· Once the first layer is debugged, its correct functioning can be assumed while the second layer is debugged, and so on.

· If an error is found during the debugging of a particular layer, the error must be on that layer, because the layers below it are already debugged.

· Thus, the design and implementation of the system is simplified.

· Each layer is implemented with only those operations provided by lower level layers. A layer does not need to know how these operations are implemented; it needs to know only what these operations do.

· Hence, each layer hides the existence of certain data structures, operations, and hardware from higher-level layers.

c. What is inter-process communication? Explain direct and indirect communication with respect to message passing system.
Cooperating processes require an interprocess communication (IPC) mechanism that will allow them to exchange data and information. There are two fundamental models of interprocess communication: (1) shared memory and (2) message passing.

Direct Communication:
Symmetric direct communication:
· This scheme exhibits symmetry in addressing; that is, both the sender process and the receiver process must name the other to communicate.
· Each process that wants to communicate must explicitly name the recipient or sender of the communication.
· In this scheme, the send.0 and receive() primitives are defined as:
· send(P, message)—Send a message to process P.
· receive (Q, message)—Receive a message from process Q
· A communication link in this scheme has the following properties:
· A link is established automatically between every pair of processes that want to communicate. The processes need to know only each other's identity to communicate.
· A link is associated with exactly two processes.
· Between each pair of processes, there exists exactly one link.
Asymmetric direct communication:
· This scheme employs asymmetry in addressing. Here, only the sender names the recipient; the recipient is not required to name the sender.
· In this scheme, the send() and receive () primitives are defined as follows:
· send(P, message)—Send a message to process P.
· receive(id, message)—-Receive a message from any process; the variable id is set to the name of the process with which communication has taken place.
· The disadvantage in both of these schemes (symmetric and asymmetric) is the limited modularity of the resulting process definitions. Changing the identifier of a process may necessitate examining all other process definitions.

Indirect Communication:
· With indirect communication, the messages are sent to and received from mailboxes, or ports.
· A mailbox can be viewed abstractly as an object into which messages can be placed by processes and from which messages can be removed.
· Each mailbox has a unique identification.
· Two processes can communicate only if the processes have a shared mailbox.
· The sendC) and receive () primitives are defined as follows:
· send(A, message)—Send a message to mailbox A.
· receive(A, message)—Receive a message from mailbox A.
· In this scheme, a communication link has the following properties:
· A link is established between a pair of processes only if both members of the pair have a shared mailbox.
· A link may be associated with more than two processes.
· Between each pair of communicating processes, there may be a number of different links, with each link corresponding to one mailbox.

· Example: Suppose that processes P1, P2, and P3 all share mailbox A, Process P1 sends a message to A, while both P2 and P3 execute a receive() from A.
· Which process will receive the message sent by P1 depends on the following methods we choose:
· Allow a link to be associated with two processes at most.
· Allow at most one process at a time to execute a receive () operation.
· Allow the system to select arbitrarily which process will receive the message (that is, either P2 or P3, but not both, will receive the message).
· A mailbox may be owned either by a process or by the operating system.
· If the mailbox is owned by a process, then we distinguish between the owner and the user. (who can only send messages to the mailbox). Since each mailbox has a unique owner, there can be no confusion about who should receive a message sent to this mailbox.
· The operating system then must provide a mechanism that allows a process to do the following:
· Create a new mailbox.
· Send and receive messages through the mailbox.
· Delete a mailbox.
When a process that owns a mailbox terminates, the mailbox disappears. Any process that subsequently sends a message to this mailbox must be notified that the mailbox no longer exists.

Module 2

3. a. Explain multithreading models. Also list the benefits of multithreaded programming.
User threads are supported above the kernel and are managed without kernel support.
Kernel threads are supported and managed directly by the operating system.

Many-to-One Model
· The many-to-one model maps many user-level threads to one kernel thread.
· Thread management is done by the thread library in user space, so it is efficient; but the entire process will block if a thread makes a blocking system call.
· Also, because only one thread can access the kernel at a time, multiple threads are unable to run in parallel on multiprocessors.
· Example: Green threads—a thread library available for Solaris—uses this model, as does GNU Portable Threads.
[image:] [image:]
One-to-One Model
· The one-to-one model maps each user thread to a kernel thread.
· It provides more concurrency than the many-to-one model by allowing another thread to run when a thread makes a blocking system call; it also allows multiple threads to run in parallel on multiprocessors.
· The only drawback to this model is that creating a user thread requires creating the corresponding kernel thread.
· Most implementations of this model restrict the number of threads supported by the system.
· Example: Linux, along with the family of Windows operating systems—including Windows 95, 98, NT, 2000, and XP implement the one-to-one model.

Many-to-Many Model
· The many-to-many model multiplexes many user-level threads to a smaller or equal number of kernel threads.
· In Many-to-one model true concurrency is not gained because the kernel can schedule only one thread at a time.
· The one-to-one model allows for greater concurrency, but the developer has to be careful not to create too many threads within an application.
· In many-to-many model developers can create as many user threads as necessary, and the corresponding kernel threads can run in parallel on a multiprocessor.
· When a thread performs a blocking system call, the kernel can schedule another thread for execution.
· Example: Java Threads on Solaris, Win32 Threads with ThreadFibre package
[image:] [image:]
Two-Level Model
· One popular variation on the many-to-many model still multiplexes many user-level threads to a smaller or equal number of kernel threads but also allows a user-level thread to be bound to a kernel thread.
This variation, sometimes referred to as the two-level model, is supported by operating systems such as IRIX, HP-UX, and Tru64 UNIX.

b. Consider the following set of processes given in table.
	Processes
	Arrival time (ms)
	Burst Time (ms)
	Priority

	P1
	0
	6
	4

	P2
	3
	5
	2

	P3
	3
	3
	6

	P4
	5
	5
	3

Consider larger priority number has higher priority. Calculate the average WT and TAT, draw Gantt chart for preemptive priority scheduling and preemptive SJF.

[image:]

c. Explain multiprocessor scheduling.

If multiple CPUs are available, load sharing becomes possible; however, the scheduling problem becomes correspondingly more complex.
Multiprocessor scheduling concentrates on systems in which the processors are identical—homogeneous—in terms of their functionality; we can then use any available processor to run any process in the queue.

Approaches to Multiple-Processor Scheduling
One approach to CPU scheduling in a multiprocessor system has all scheduling decisions, I/O processing, and other system activities handled by a single processor—the master server. The other processors execute only user code.

This asymmetric multiprocessing is simple because only one processor accesses the system data structures, reducing the need for data sharing.

A second approach uses symmetric multiprocessing (SMP), where each processor is self-scheduling. All processes may be in a common ready queue, or each processor may have its own private queue of ready processes.
Regardless, scheduling proceeds by having the scheduler for each processor examine the ready queue and select a process to execute.

Processor Affinity
Because of the high cost of invalidating and re-populating caches, most SMP systems try to avoid
migration of processes from one processor to another and instead attempt to keep a process running on the same processor. This is known as processor affinity, meaning that a process has an affinity for the processor on which it is currently running.
Processor affinity takes several forms. When an operating system has a policy of attempting to keep a process running on the same processor—but not guaranteeing that it will do so— we have a situation known as soft affinity.
Here, it is possible for a process to migrate between processors. Some systems —such as Linux—also provide system calls that support hard affinity, thereby allowing a process to specify that it is not to migrate to other processors.

Load Balancing
Load balancing attempts to keep the workload evenly distributed across all processors in an SMP system. It is important to note that load balancing is typically only necessary on systems where each processor has its own private queue of eligible processes to execute.

There are two general approaches to load balancing: push migration and pull migration. With push migration, a specific task periodically checks the load on each processor and—if it finds an imbalance—-evenly distributes the load by moving (or pushing) processes from overloaded to idle or less-busy processors. Pull migration occurs when an idle processor pulls a waiting task from a busy processor. Push and pull migration need not be mutually exclusive and are in fact often implemented in parallel on load-balancing systems.

Symmetric Multithreading
SMP systems allow several threads to run concurrently by providing multiple physical processors.
The idea behind SMT is to create multiple logical processors on the same physical processor, presenting a view of several logical processors to the operating system, even on a system with only a single physical processor. Each logical processor has its own architecture state, which includes general-purpose and machine-state registers. Furthermore, each logical processor is responsible for its own interrupt handling, meaning that interrupts are delivered to—and handled by—logical processors rather than physical ones.
[image:]

4. a. What are the requirements to critical section problem? Explain Peterson’s solution to critical section problems.

Requirements:
1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes can be executing in their critical sections.
2. Progress. If no process is executing in its critical section and some processes wish to enter their critical sections, then only those processes that are not executing in their remainder sections can participate in the decision on which will enter its critical section next. This selection cannot be postponed indefinitely.
3. Bounded waiting. There exists a bound, or limit, on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted.

b. Explain Dining philosophers problem with semaphores.

Dining-Philosophers Problem:
Consider five philosophers who spend their lives thinking and eating. The philosophers share a circular table surrounded by five chairs, each belonging to one philosopher. In the center of the table is a bowl of rice, and the table is laid with five single chopsticks.
[image:]
A Philosopher can either think or get hungry. If hungry, philosopher will eat the bowl of rice using two chopsticks, one in the immediate left and one in the immediate right.
A philosopher may pick up only one chopstick at a time. Obviously, she cannot pick up a chopstick that is already in the hand of a neighbour.
When she is finished eating, she puts down both of her chopsticks and starts thinking
again.
One simple solution is to represent each chopstick with a semaphore. A philosopher tries to grab a chopstick by executing a wait () operation on that semaphore; she releases her chopsticks by executing the signal() operation on the appropriate semaphores. Thus, the shared data are
semaphore chopstick[5];
where all the elements of chopstick are initialized to 1.
 do {
wait (chopstick [i]);
wait(chopstick [(i + 1) % 5]) ;
// eat
signal(chopstick [i]);
signal(chopstick [(i + 1) % 5]);
// think
}while (TRUE);

c. Explain the syntax and schematic view of monitors.

A monitor type presents a set of programmer-defined operations that are provided mutual exclusion within the monitor.

Usage:
The monitor type contains the declaration of variables whose values define the state of an instance of that type, along with the bodies of procedures or functions that operate on those variables. The syntax of a monitor is shown below.

monitor monitor name f
{
// shared variable declarations

procedure P1 (. . .) {
. . .
}
procedure P2 (. . .) {
		. . .
}

procedure Pn (. . .) {
		. . .
}
initializationcode (. . .) {
	. . .
}
}

The representation of a monitor type cannot be used directly by the various processes.
The procedure defined within a monitor can access only those variables declared locally within the monitor and its formal parameters.
Similarly, the local variables of a monitor can be accessed by only the local procedures.

The monitor construct ensures that only one process at a time can be active within the monitor. Therefore, the programmer does not need to code this synchronization constraint explicitly
[image:]
A programmer who needs to write a tailor-made synchronization scheme can define one or more variables of type condition:
condition x, y;
The only operations that can be invoked on a condition variable are wait () and signal(). The operation
x.wait() means that the process invoking this operation is suspended until another process invokes
x.signal().
The x. signal () operation resumes exactly one suspended process. If no process is suspended, then the signal () operation has no effect; that is, the state of x is the same as if the operation had never been executed.

Module 3

5. a. Consider the following snapshot of a system.

	Allocation

	
	A
	B
	C

	P0
	0
	0
	2

	P1
	1
	0
	0

	P2
	1
	3
	5

	
	
	
	

	
	
	
	

	P3
	6
	3
	2

	P4
	1
	4
	3

	
	Max

	
	A
	B
	C

	P0
	0
	0
	4

	P1
	2
	0
	1

	P2
	1
	3
	7

	P3
	8
	4
	2

	P4
	1
	5
	7

	Available

	A
	B
	C

	1
	0
	2

Find out need matrix. If a request from process P2 arrived for (0,0,2), can the request be granted immediately? Is the system in a safe state?

[image:]
b. What are the necessary conditions for a deadlock? Explain different methods to recover from deadlock.
Characteristics (or Necessary conditions):
A deadlock situation can arise if the following four conditions hold simultaneously in a system:
1. Mutual exclusion. At least one resource must be held in a non-sharable mode; that is, only one process at a time can use the resource. If another process requests that resource, the requesting process must be delayed until the resource has been released.
2. Hold and wait. A process must be holding at least one resource and waiting to acquire additional resources that are currently being held by other processes.
3. No preemption. Resources cannot be preempted. That is, a resource can be released only voluntarily by the process holding it, after that process has completed its task.
4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is waiting for a resource held by P1, P1 is waiting for a resource held by P2, •••, Pn-1 is waiting for a resource held by Pn, and Pn is waiting for a resource held by P0.
There are two options for breaking a deadlock. One is simply to abort one or more processes to break the circular wait. The other is to preempt some resources from one or more of the deadlocked processes.

Process Termination
· Abort all deadlocked processes. This method clearly will break the deadlock cycle, but at great expense; the deadlocked processes may have computed for a long time, and the results of these partial computations must be discarded and probably will have to be recomputed later.
· Abort one process at a time until the deadlock cycle is eliminated. This method incurs considerable overhead, since, after each process is aborted, a deadlock-detection algorithm must be invoked to determine whether any processes are still deadlocked.

Many factors may affect which process is chosen, including:
a. Priority of the process
b. How long the process has computed and how much longer the process will compute before completing its designated task
c. How many and what type of resources the process has used (for example, whether the resources are simple to preempt)
d. How many more resources the process needs in order to complete
e. How many processes will need to be terminated
f. Whether the process is interactive or batch

Resource Preemption:
Here there are three issues need to be addressed:
a. Selecting a victim. Which resources and which processes are to be preempted? As in process termination, we must determine the order of preemption to minimize cost.
b. Rollback. If we preempt a resource from a process, what should be done with that process? We must roll back the process to some safe state and restart it from that state. Since, in general, it is difficult to determine what a safe state is, the simplest solution is a total rollback: Abort the process and then restart it.
c. Starvation. How do we ensure that starvation will not occur? That is, how can we guarantee that resources will not always be preempted from the same process?
In a system where victim selection is based primarily on cost factors, it may happen that the same process is always picked as a victim. As a result, this process never completes its designated task, a starvation situation that must be dealt with in any practical system. Clearly, we must ensure that a process can be picked as a victim only a (small) finite number of times. The most common solution is to include the number of rollbacks in the cost factor.

6. a. What is paging? Explain paging hardware with translation lookaside buffer.
Paging is a memory-management scheme that permits the physical address space of a process to be non-contiguous. Paging avoids the considerable problem of fitting memory chunks of varying sizes onto the backing store.

Translation look-aside buffers (TLBs) are a special, small, fast lookup hardware cache. The TLB is associative, high-speed memory. Each entry in the TLB consists of two parts: a key (or tag) and a value.

When the associative memory is presented with an item, the item is compared with all keys simultaneously. If the item is found, the corresponding value field is returned. The search is fast; the hardware, however, is expensive.
Typically, the number of entries in a TLB is small, often numbering between 64 and 1,024.

The TLB is used with page tables in the following way. The TLB contains only a few of the page-table entries. When a logical address is generated by the CPU, its page number is presented to the TLB. If the page number is found, its frame number is immediately available and is used to access memory. The whole task may take less than 10 percent longer than it would if an unmapped memory reference were used.

If the page number is not in the TLB (known as a TLB miss), a memory reference to the page table must be made. When the frame number is obtained, we can use it to access memory. In addition, we add the page number and frame number to the TLB, so that they will be found quickly on the next reference. If the TLB is already full of entries, the operating system must select one for replacement. Replacement policies range from least recently used (LRU) to random. Furthermore, some TLBs allow entries to be wired down, meaning that they cannot be removed from the TLB. Typically, TLB entries for kernel code are wired down.

[image:]

b. Explain the structure of page table with respect to hierarchical paging.

One way is to use a two-level paging algorithm, in which the page table itself is also paged. Remember our example of a 32-bit machine with a page size of 4 KB. A logical address is divided into a page number consisting of 20 bits and a page offset consisting of 12 bits. Because we page the page table, the page number is further divided into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as follows:
[image:]

where p is an index into the outer page table and p2 is the displacement within the page of the outer page table. The address-translation method for this architecture is shown in Figure. Because address translation works from the outer page table inward, this scheme is also known as a forward-mapped page table.
[image:]

c. Given the memory partitions of 100K, 500K, 200K, 300K, and 600K, apply first fit, worst fit, and best fit algorithms to place 212K, 417K, 112K, 426K. Which algorithms make efficient use of memory?

[image:]

Module 4

7. a. What is a page fault? With a supporting diagram explain the steps involved in handling page fault.

The situation when the process tries to access a page that was not brought into memory is called page fault. Access to a page marked invalid causes a page-fault trap. The paging hardware, in translating the address through the page table, will notice that the invalid bit is set, causing a trap to the operating system. This trap is the result of the operating system's failure to bring the desired page into memory. The procedure for handling this page fault is straightforward

1. We check an internal table (usually kept with the process control block) for this process to determine whether the reference was a valid or an invalid memory access.
2. If the reference was invalid, we terminate the process. If it was valid, but we have not yet brought in that page, we now page it in.
3. We find a free frame (by taking one from the free-frame list, for example).
4. We schedule a disk operation to read the desired page into the newly allocated frame.
5. When the disk read is complete, we modify the internal table kept with the process and the page table to indicate that the page is now in memory.
6. We restart the instruction that was interrupted by the trap. The process can now access the page as though it had always been in memory.

b. Consider the page reference string for a memory with three frames, how many page faults will occur for FIFO, LRU and optimal page replacement algorithms. Which is most efficient?
Reference String: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

[image:]
[image:]
[image:]

c. Explain copy-on-write process in virtual memory.
Copy-on-write works by allowing the parent and child processes initially to share the same pages. These shared pages are marked as copy-on-write pages, meaning that if either process writes to a shared page, a copy of the shared page is created. Copy-on-write is illustrated in Figure and shows how the contents of the physical memory before and after process 1 modifies page C.
For example, assume that the child process attempts to modify a page containing portions of the stack, with the pages set to be copy-on-write. The operating system will then create a copy of this page, mapping it to the address space of the child process. The child process will then modify its copied page and not the page belonging to the parent process. Obviously, when the copy-on-write technique is used, only the pages that are modified by either process are copied; all unmodified pages can be shared by the parent and child processes.
[image:]
[image:]

8. a. What are the different allocation methods in disk? Explain in detail any two methods.

(1) [image:][image:]Contiguous allocation: Contiguous allocation requires that each file occupy a set of contiguous blocks on the disk. Contiguous allocation of a file is defined by the disk address and length (in block units) of the first block. If the file is n blocks long and starts at location b, then it occupies blocks b, b + 1, b + 2, ..., b + n — 1. The directory entry for each file indicates the address of the starting block and the length of the area allocated for this file. Contiguous allocation has some problems, however. One difficulty is finding space for a new file. This suffer from the problem of external fragmentation.
(2) Linked Allocation:
Linked allocation solves all problems of contiguous allocation. With linked allocation, each file is a linked list of disk blocks; the disk blocks may be scattered anywhere on the disk. The directory contains a pointer to the first and last blocks of the file. For example, a file of five blocks might start at block 9 and continue at block 16, then block 1, then block 10, and finally block 25. Each block contains a pointer to the next block. These pointers are not made available to the user. Thus, if each block is 512 bytes in size, and a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508 bytes.
To create a new file, we simply create a new entry in the directory. With linked allocation, each directory entry has a pointer to the first disk block of the file. This pointer is initialized to nil (the end-of-list pointer value) to signify an empty file. The size field is also set to 0. A write to the file causes the free-space management system to find a free block, and this new block is written to and is linked to the end of the file. To read a file, we simply read blocks by following the pointers from block to block. There is no external fragmentation with linked allocation, and any free block on the free-space list can be used to satisfy a request. The size of a file need not be declared when that file is created. A file can continue to grow as long as free blocks are available. There is no need to compact disk space.
a. File Allocation Table:
An important variation on linked allocation is the use of a file-allocation table (FAT). This simple but efficient method of disk-space allocation is used by the MS-DOS and OS/2 operating systems. A section of disk at the beginning of each volume is set aside to contain the table. The table has one entry for each disk block and is indexed by block number. The FAT is used in much the same way as a linked list. The directory entry contains the block number of the first block of the file. The table entry indexed by that block number contains the block number of the next block in the file. This chain continues until the last block, which has a special end-of-file value as the table entry. Unused blocks are indicated by a 0 table value. Allocating a new block to a file is a simple matter of finding the first 0-valued table entry and replacing the previous end-of-file value with the address of the new block. The 0 is then replaced with the end-of-file value. An illustrative example is the FAT structure shown in the figure for a file consisting of disk blocks 217, 618, and 339.

[image:]
(3) Indexed Allocation: Linked allocation solves the external-fragmentation and size-declaration problems of contiguous allocation. However, in the absence of a FAT, linked allocation cannot support efficient direct access, since the pointers to the blocks are scattered with the blocks themselves all over the disk and must be retrieved in order. Indexed allocation solves this problem by bringing all the pointers together into one location: the index block.

Each file has its own index block, which is an array of disk-block addresses. The ith entry in the index block points to the ith block of the file. The directory contains the address of the index block. To find and read the ith block, we use the pointer in the ith index-block entry. This scheme is similar to the paging scheme. When the file is created, all pointers in the index block are set to nil. When the ith block is first written, a block is obtained from the free-space manager, and its address is put in the ith index-block entry.
[image:]

b. List the different directory structure. Explain acyclic graph directory and tree structures directory.

The file systems of computers, then, can be extensive. Some systems store millions of files on terabytes of disk. To manage all these data, we need to organize them. This organization involves the use of directories.

(1) Single-Level Directory The simplest directory structure is the single-level directory. All files are contained in the same directory, which is easy to support and understand. Since all files are in the same directory, they must have unique names.

[image:]

(2) Two-Level Directory As we have seen, a single-level directory often leads to confusion of file names among different users. The standard solution is to create a separate directory for each user. In the two-level directory structure, each user has his own user file directory (LTD). The UFDs have similar structures, but each lists only the files of a single user. When a user job starts or a user logs in, the system's master file directory (MFD) is searched. The MFD is indexed by user name or account number, and each entry points to the UFD for that user. When a user refers to a particular file, only his own UFD is searched. Thus, different users may have files with the same name, as long as all the file names within each UFD are unique.
Although the two-level directory structure solves the name-collision problem, it still has disadvantages. This structure effectively isolates one user from another.

[image:]
(3) Tree-Structured Directories Once we have seen how to view a two-level directory as a two-level tree, the natural generalization is to extend the directory structure to a tree of arbitrary height. This generalization allows users to create their own subdirectories and to organize their files accordingly. A tree is the most common directory structure. The tree has a root directory, and every file in the system has a unique path name. A directory (or subdirectory) contains a set of files or subdirectories. A directory is simply another file, but it is treated in a special way.

The current directory should contain most of the files that are of current interest to the process. When reference is made to a file, the current directory is searched. If a file is needed that is not in the current directory, then the user usually must either specify a path name or change the current directory to be the directory holding that file.
Path names can be of two types: absolute and relative. An absolute path name begins at the root and follows a path down to the specified file, giving the directory names on the path. A relative path name defines a path from the current directory.

[image:]

(4) Acyclic-Graph Directories A tree structure prohibits the sharing of files or directories. An acyclic graph —that is, a graph with no cycles—allows directories to share subdirectories and files. The same file or subdirectory may be in two different directories. The acyclic graph is a natural generalization of the tree-structured directory scheme.

It is important to note that a shared file (or directory) is not the same as two copies of the file. With two copies, each programmer can view the copy rather than the original, but if one programmer changes the file, the changes will not appear in the other's copy. With a shared file, only one actual file exists, so any changes made by one person are immediately visible to the other. Sharing is particularly important for subdirectories; a new file created by one person will automatically appear in all the shared subdirectories.

[image:]

General Graph Directory
A serious problem with using an acyclic-graph structure is ensuring that there are no cycles.
If cycles are allowed to exist in the directory, we likewise want to avoid searching any component twice, for reasons of correctness as well as performance. A poorly designed algorithm might result in an infinite loop
continually searching through the cycle and never terminating. One solution is to limit arbitrarily the number of directories that will be accessed during a search.
[image:]

c. What is a file? Also list different file operations.

A file is a named collection of related information that is recorded on secondary storage. From a user's perspective, a tile is the smallest allotment of logical secondary storage; that is, data cannot be written to secondary storage unless they are within a file.

Typical file operations
· Creating a file. Two steps are necessary to create a file. First, space in the file system must be found for the file. Second, an entry for the new file must be made in the directory.
· Writing a file. To write a file, we make a system call specifying both the name of the file and the information to be written to the file. The system searches the directory to find the file's location. The system must keep a write pointer to the location in the file where the next write is to take place. The write pointer must be updated whenever a write occurs.
· Reading a file. To read from a file, we use a system call that specifies the name of the file and where (in memory) the next block of the file should be put. Again, the directory is searched for the associated entry, and the system needs to keep a read pointer to the location in the file where the next read is to take place. Once the read has taken place, the read pointer is updated. Because a process is usually either reading from or writing to a file, the current operation location can be kept as a per-process currentfile-position pointer. Both the read and write operations use this same pointer, saving space and reducing system complexity.
· Repositioning within a file. The directory is searched for the appropriate entry, and the current-file-position pointer is repositioned to a given value. Repositioning within a file need not involve any actual I/O. This file operation is also known as a file seek.
· Deleting a file. To delete a file, we search the directory for the named file. After finding the associated directory entry, we release all file space, so that it can be reused by other files, and erase the directory entry.
· Truncating a file. The user may want to erase the contents of a file but keep its attributes. Rather than forcing the user to delete the file and then recreate it, this function allows all attributes to remain unchanged—except for file length—but lets the tile be reset to length zero and its file space released.

Module 5
9. a. List the different disk scheduling techniques, explain any two scheduling, considering the following disk queue requests. 98, 183, 37,122, 14, 124, 65, 67

[image:]
[image:]

b. What is an access matrix? Explain the different methods of implementing access matrix.

Our model of protection can be viewed abstractly as a matrix, called an access
matrix. The rows of the access matrix represent domains, and the columns
represent objects. Each entry in the matrix consists of a set of access rights.
Because the column defines objects explicitly, we can omit the object name
from the access right. The entry access(/,/) defines the set of operations that a
process executing in domain Dj can invoke on object Or
To illustrate these concepts, we consider the access matrix shown in Figure
14.3. There are four domains and four objects—three files (F|, F2, F:1) and one
laser printer. A process executing in domain D\ can read files Fj and F3. A
process executing in domain D4 has the same privileges as one executing in
domain D\; but in addition, it can also write onto files F| and F?. Note that the
laser printer can be accessed only by a process executing in domain Do-
[image:]

The access-matrix scheme provides us with the mechanism for specifying
a variety of policies.

Access matrix with domain as objects:

Processes should be able to switch from one domain to another. Domain switching from domain D; to domain D1 is allowed if and only if the access right switch access(i,j). Thus, in Figure, a process executing in domain D2 can switch to domain D3 or to domain D4. A process in domain D4 can switch to D1, and one in domain D1 can switch to domain D2.

[image:]

The ability to copy an access right from one domain (or row) of the access matrix to another is denoted by an asterisk (*) appended to the access right.
The copy right allows the copying of the access right only within the column (that is, for the object) for which the right is defined. For example, in Figure (a), a process executing in domain D2 can copy the read operation into any entry associated with file F2. Hence, the access matrix of Figure (a) can be modified to the access matrix shown in Figure (b).
This scheme has two variants:
1. A right is copied from access(i, j) to access(k,j); it is then removed from access(i,j). This action is a transfer of a right, rather than a copy.
2. Propagation of the copy right may be limited. That is, when the right R* is copied from access(i,j) to access(k,j), only the right R (not R*) is created. A process executing in domain Dk cannot further copy the
right R.
A system may select only one of these three copy rights, or it may provide all three by identifying them as separate rights: copy, transfer, and limited copy.

[image:]

We also need a mechanism to allow addition of new rights and removal of some rights. The owner right controls these operations. If access(i,j) includes the owner right, then a process executing in domain Di can add and remove any right in any entry in column j. For example, in Figure (a), domain Di is the owner of F1 and thus can add and delete any valid right in column F1.
Similarly, domain D2 is the owner of F2 and F3 and thus can add and remove any valid right within these two columns.
[image:]

The control right is applicable only to domain objects. That is, it allows to change the entries in a row.
If access(i,j) includes the control right, then a process executing in domain D. can remove any access right from row 4. For example, suppose that, in Figure, we include the control right in access (D2, D4). Then, a process executing in domain D2 could modify domain D4, as shown in Figure.

[image:]

c. Explain bad-block recovery in disk.
On simple disks, such as some disks with [DE controllers, bad blocks are handled manually. For instance, the MS-DOS format command performs logical formatting and, as a part of the process, scans the disk to find bad blocks. If format finds a bad block, it writes a special value into the corresponding FAT entry to tell the allocation routines not to use that block. If blocks go bad during
normal operation, a special program (such as chkdsk) must be run manually to search for the bad blocks and to lock them away as before. Data that resided on the bad blocks usually are lost.

More sophisticated disks, such as the SCSI disks used in high-end PCs and most workstations and servers, are smarter about bad-block recovery. The controller maintains a list of bad blocks on the disk. The list is initialized during the low-level formatting at the factory and is updated over the life of the disk. Low-level formatting also sets aside spare sectors not visible to the operating system. The controller can be told to replace each bad sector logically with one of the spare sectors. This scheme is known as sector sparing or forwarding.

10. a. Explain the design principle of Linux.

· Speed and efficiency are important design goals for Linux.
· Current work on Linux has concentrated on a third major design goal: standardization.
· Source code written for one flavour may not necessarily compile or run correctly on another.
· Even when the same system calls are present on two different UNIX systems, they do not necessarily behave in exactly the same way.

· The POSIX standards comprise a set of specifications of different aspects of operating-system behavior. There are POSIX documents for common operating-system functionality and for extensions such as process threads and real-time operations.
· Linux is designed to be compliant with the relevant POSIX documents; at least two Linux distributions have achieved official POSIX certification.

· By default, however, the Linux programming interface adheres to SVR4 UNIX semantics.
· A separate set of libraries is available to implement BSD semantics as well.

· Many other standards exist in the UNIX world, but full certification of Linux against them is sometimes slowed because they are often available only for a fee, and the expense involved in certifying an operating system's compliance with most standards is substantial.

· However, supporting a wide base of applications is important for any operating system, so implementation of standards is a major goal for Linux development, even if the implementation is not formally certified.

· In addition to the basic POSIX standard, Linux currently supports the POSIX threading extensions—Pthreads—and a subset of the POSIX extensions for real-time process control.

b. Explain the process management in Linux Platform.

· Linux uses a process model similar to those of other versions of UNIX.
· Linux operates differently from UNIX in a few key places, however.

· The fork() and exec() Process Model
· The basic principle of UNIX process management is to separate two operations:
· The creation of a process using the fork() system call and
· The running of a new program using exec() system call.

· These are two distinctly separate functions.
· A new process may be created with fork() without a new program being run—the new subprocess simply continues to execute exactly the same program that the first, parent process was running.

· Equally, running a new program does not require that a new process be created first: Any process may call exec() at any time. The currently running program is immediately terminated, and the new program starts executing in the context of the existing process.

· This model has the advantage of great simplicity. Rather than having to specify every detail of the environment of a new program in the system call that runs that program, new programs simply run in their existing environment.

· If a parent process wishes to modify the environment in which a new program is to be run, it can fork and then, still running the original program in a child process, make any system calls it requires to modify that child process before finally executing the new program.

· Process properties fall into three groups: the process identity, environment, and context.

(1) Process Identity:
A process identity consists mainly of the following items:
• Process ID (PID). Each process has a unique identifier. PIDs are used to specify processes to the operating system when an application makes a system call to signal, modify, or wait for another process.
• Credentials. Each process must have an associated user ID and one or more group IDs that determine the
rights of a process to access system resources and files.
• Personality. Each process has an associated personality identifier that can modify slightly the semantics of certain system calls. Personalities are primarily used by emulation libraries to request that system calls be compatible with certain flavors of UNIX.

(2) Process Environment
· A process's environment is inherited from its parent and is composed of two null-terminated vectors:
· The argument vector and
· The environment vector.

· The argument vector simply lists the command-line arguments used to invoke the running program; it conventionally starts with the name of the program itself.
· The environment vector is a list of "NAME=VALUE" pairs that associates named environment variables with arbitrary textual values.

· The new child process will inherit the environment that its parent possesses.
· A completely new environment is set up when a new program is invoked. On calling exec() , a process must supply the environment for the new program.
· The kernel passes these environment variables to the next program, replacing the process's current environment.
· The passing of environment variables from one process to the next and the inheriting of these variables by the children of a process provide flexible ways to pass information to components of the user-mode system software

(3) Process Context
· Process context is the state of the running program at any one time; it changes constantly.
· Process context includes the following parts.
(a)Scheduling context.
· The most important part of the process contexts is scheduling context—the information that the scheduler needs to suspend and restart the process.
· This information includes saved copies of all the process's registers, scheduling priority, and any outstanding signals waiting to be delivered to the process.
(b)Accounting.
· The kernel maintains information about the resources currently being consumed by each process and the total resources consumed by the process in its entire lifetime so far.
(c)File table.
· The file table is an array of pointers to kernel file structures.
· When making file-I/O system calls, processes refer to files by their index into this table.
(d)File-system context.
· The file-system context applies to requests to open new files.
· The current root and default directories to be used for new file searches are stored here.
(e)Signal-handler table.
· The signal-handler table defines the routine in the process's address space to be called when specific
· signals arrive.
(f)Virtual memory context.
· The virtual memory context describes the full contents of a process's private address space.

Processes and Threads
· Linux provides the fork() system call with the traditional functionality of duplicating a process.
· Linux also provides the ability to create threads using the clone() system call.

· When clone() is invoked, it is passed a set of flags that determine how much sharing is to take place between the parent and child tasks. Some of these flags are listed below:
[image:]
· Thus, if clone() is passed the flags CLONE_FS, CL0NE_VM, CLONE_SIGHAND, and CLONE_FILES, the parent and child tasks will share the same file-system information (such as the current working directory), the same memory space, the same signal handlers, and the same set of open files.
· Using clone() in this fashion is equivalent to creating a thread in other systems, since the parent task shares most of its resources with its child task.
· If none of these flags is set when clone () is invoked, no sharing takes place, resulting in functionality similar to the fork() system call.

c. Explain the inter-process communication mechanisms in Linux.

Synchronization and Signals
· The standard UNIX mechanism for informing a process that an event has occurred is the signal.
· Signals can be sent from any process to any other process, with restrictions on signals sent to processes owned by another user. However, a limited number of signals are available, and they cannot carry information: Only the fact that a signal occurred is available to a process.
· Signals are generated not only by processes, but also by the kernel.
· For example, it can send a signal to a server process when data arrive on a network channel, to a parent process when a child terminates, or to a waiting process when a timer expires.

· Internally, in the Linux kernel, communication about incoming asynchronous events within
· the kernel is performed through the use of scheduling states and wait_queue structures. These mechanisms allow kernel-mode processes to inform one another about relevant events, and they also allow events to be generated by device drivers or by the networking system.
· Whenever a process wants to wait for some event to complete, it places itself on a wait queue associated with that event and tells the scheduler that it is no longer eligible for execution. Once the event has completed, it will wake up every process on the wait queue. This procedure allows multiple processes to wait for a single event.
· For example, if several processes are trying to read a file from a disk, then they will all be awakened once the data have been read into memory successfully.

· Although signals have always been the main mechanism for communicating asynchronous events among processes, Linux also implements the semaphore mechanism of System V UNIX.

· A process can wait on a semaphore as easily as it can wait for a signal, but semaphores have two advantages:
· Large numbers of semaphores can be shared among multiple independent processes, and
· Operations on multiple semaphores can be performed atomically.
· [bookmark: _GoBack]Internally, the standard Linux wait queue mechanism synchronizes processes that are communicating with semaphores.

Passing of Data Among Processes
· Linux offers several mechanisms for passing data among processes.
· The standard UNIX pipe mechanism allows a child process to inherit a communication channel from its parent; data written to one end of the pipe can be read at the other.
· Under Linux, pipes appear as just another type of inode to virtual-filesystem software, and each pipe has a pair of wait queues to synchronize the reader and writer.
· UNIX also defines a set of networking facilities that can send streams of data to both local and remote processes.

· Shared memory offers an extremely fast way to communicate large or small amounts of data; any data written by one process to a shared memory region can be read immediately by any other process that has mapped that region into its address space.
· The main disadvantage of shared memory is that, on its own, it offers no synchronization: A process can neither ask the operating system whether a piece of shared memory has been written to nor suspend execution until such a write occurs.
· Shared memory becomes particularly powerful when used in conjunction with another interprocess-communication mechanism that provides the missing synchronization.
· A shared-memory region in Linux is a persistent object that can be created or deleted by processes. Such an object is treated as though it were a small independent address space.
· Similarly, shared-memory mappings direct page faults to map in pages from a persistent shared-memory object. Also just as for files, sharedmemory objects remember their contents even if no processes are currently mapping them into virtual memory.
image6.emf

image7.emf

image8.png

image9.emf

image10.emf

image11.emf

image12.png

image13.emf

image14.emf

image15.emf

image16.png

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image31.emf

image32.emf

image33.emf

image34.emf

image35.emf

image36.emf

image37.emf

image38.emf

image1.emf

image2.jpeg

image3.emf

image4.emf

image5.emf

