

Scheme of Evaluation

Internal Assessment Test 2 – Oct.2019

Sub: Machine Learning Code: 15CS73

Date: 14/10/2019 Duration: 90mins
Max

Marks: 50
Sem: VII Branch: ISE A,B

Note: Answer Any Five Questions

Question

Description Marks Distribution Max

Marks

1
 Concept of decision tree learning

 Decision tree using ID3 algorithm

5M
5M 10M 10 M

2

a)

 Calculating entropy

 Calculating information gain

2.5M
2.5M

5 M

10 M

b)

 Listing the appropriate problems 5M

5 M

3

 Calculating the overall entropy

 Calculating individual attribute gain values

along with entropy

 Identifying root node and sub nodes

 Constructing final decision tree

2M

4M
2M
2M

10M

10 M

4

 Gradient descent algorithm

 Deriving the equation

5M

5M 10 M 10 M

5

a)

 Application of neural network with explanation

 Diagramatic representation
3M

2M
5 M

10 M

b)

 Explanation of perceptron concept

 Diagrametic representation

3 M

2M

5 M

6
 Backpropagation algorithm

 Deriving the derivatives rule

4M

6M
10 M 10M

7

a)

 Solving perceptron A and B

 Justification

 2M

2M

4M

10M

b)

 Issues in decision tree learning

1. Avoiding Overfitting the Data Reduced error

pruning Rule post-pruning
2. Incorporating Continuous-Valued Attributes

1.2*5=6M

6M

3. Alternative Measures for Selecting Attributes
4. Handling Training Examples with Missing

Attribute Values
5. Handling Attributes with Differing Costs

8)

 Calculating the overall entropy

 Calculating individual attribute gain values

along with entropy

 Identifying root node and sub nodes

 Constructing final decision tree

2M
4M

2M
2M

10M 10M

Internal Assessment Test 2 Solutions– Oct.2019

Sub: Machine Learning Code: 15CS73

Date: 14/10/2019 Duration: 90mins
Max

Marks: 50
Sem: VII Branch: ISE A,B

Note: Answer Any Five Questions

1. Explain the concept of decision tree learning. Discuss the necessary measure required to select the

attributes for building a decision tree using ID3 algorithm

Decision tree learning is a method for approximating discrete-valued target functions, in which

the learned function is represented by a decision tree.

Decision tree representation

 Decision trees classify instances by sorting them down the tree from the root to some

leaf node, which provides the classification of the instance.

 Each node in the tree specifies a test of some attribute of the instance, and each branch

descending from that node corresponds to one of the possible values for this attribute.

 An instance is classified by starting at the root node of the tree, testing the attribute

specified by this node, then moving down the tree branch corresponding to the value

of the attribute in the given example. This process is then repeated for the subtree

rooted at the new node.

Figure 1 illustrates a typical learned decision tree.

This decision tree classifies Saturday mornings according to whether they are suitable for

playing tennis. For example, the instance

would be sorted down the left most branch of this decision tree and would therefore be

classified as a negative instance (i.e., the tree predicts that PlayTennis = No).

In general, decision trees represent a disjunction of conjunctions of constraints on the attribute

values of instances. For example, the decision tree shown in Figure 1 corresponds to the

expression

ID3 Algorithm:

ID3 stands for Iterative Dichotomiser 3

• ID3 basic algorithm learns decision trees by constructing them top-down, beginning with

the question "which attribute should be tested at the root of the tree?” The best attribute is

selected and used as the test at the root node of the tree.

• A descendant of the root node is then created for each possible value of this attribute, and

the training examples are sorted to the appropriate descendant node.

• The entire process is then repeated using the training examples associated with each

descendant node to select the best attribute to test at that point in the tree.

Which Attribute Is the Best Classifier?

• The central choice in the ID3 algorithm is selecting which attribute to test at each

 node in the tree.

• ID3 uses information gain measure to select among the candidate attributes at each step while

growing the tree.

• To define information gain, we begin by defining a measure called entropy.

 Entropy measures the impurity of a collection of examples.

Where,

p+ is the proportion of positive examples in S

p- is the proportion of negative examples in S.

• The entropy is 0 if all members of S belong to the same class

• The entropy is 1 when the collection contains an equal number of positive and negative

examples

• If the collection contains unequal numbers of positive and negative examples, the entropy is

between 0 and 1

Information gain, is the expected reduction in entropy caused by partitioning the examples according to

this attribute.

• The information gain, Gain(S,A) of an attribute A, relative to a collection of examples S, is

defined as

2.a) For the transaction shown in the table compute the following.

i) Entropy of the collection of transaction records of the table with respect to classification.

ii) What are the information gain of a1 and a2 relative to the transactions of the table.

Instance 1 2 3 4 5 6 7 8 9

a1 T T T F F F F T F

a2 T T F F T T F F T

Target

Class
+ + - + - - - + -

i) S is the given collection ,

Entropy(S) = 1 ,when equal number of positive and negative examples.

ii) Information gain(S,A2)

Gain(S,A2) = 1- { (4/6)*Entropy(T) + (2/6)* Entropy(F)}

 =1- {(4/6)*(equal no.of + and -) + (2/6)*(equal no.of + and -)}

 = 1-{(4/6)*1 + (2/6)*1}

 = 0

2.b) Write the appropriate problems used for decision tree learning & List the applications of

decision tree learning.

Appropriate problems for decision tree learning

Although a variety of decision tree learning methods have been developed with somewhat

differing capabilities and requirements, decision tree learning is generally best suited to

problems with the following characteristics:

• Instances are represented by attribute-value pairs. Instances are described by a fixed

set of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation for

decision tree learning is when each attribute takes on a small number of disjoint possible

values (e.g., Hot, Mild, Cold).

• The target function has discrete output values. The decision tree assigns a boolean

classification (e.g., yes or no) to each example. Decision tree methods easily extend to

learning functions with more than two possible output values.

• Disjunctive descriptions may be required. As noted above, decision trees naturally

represent disjunctive expressions.

• The training data may contain errors. Decision tree learning methods are robust to

errors, both errors in classifications of the training examples and errors in the attribute

values that describe these examples.

• The training data may contain missing attribute values. Decision tree methods can be

used even when some training examples have unknown values (e.g., if the Humidity of the

day is known for only some of the training examples).

Applications :

Decision tree learning has therefore been applied to problems such as learning to classify

medical patients by their disease, equipment malfunctions by their cause, and loan applicants by

their likelihood of defaulting on payments.

Such problems, in which the task is to classify examples into one of a discrete set of possible

categories are often referred to as classification problems.

3. Create and explain the decision tree for the following transactions using ID3 algorithm.

Tid Refund Marital Status
Taxable

Income
Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes

Entropy(S) = -(3/10)log (3/10)-(7/10)log (7/10)

 = 0.8813

Info.gain(S,Refund) = Entropy(S) – [(3/10)* Entropy(Yes) +(7/10) *Entropy(No)]

Entropy (Yes) = 0 bcz both belongs to –ve class

Entropy (No) = -(3/7) log(3/7) – (4/7) log(4/7)

 = 0.9852

Hence

Info.gain(S, Refund) = Entropy(S) – [(3/10)*0 +(7/10) *0.9852]

 = 0.8813 - [0 +(7/10)*0.9852]

 = 0.19166

Info.gain(S, Marital status) =

Entropy(S) – [(4/10)* Entropy (Single) +(4/10) *Entropy (Married)+(2/10)*Entropy (Divorced)]

Entropy (Single) = 1

Entropy (Married) = 0

Entropy (Divorced) = 1

Info.gain(S, Marital Status) = Entropy(S) – [(4/10)*(1) + (4/10) *(0) +((2/10)*1]

= 0.2813

Info.gain(S, Taxable Income) = Entropy(S) – [(3/10)* Entropy (<80k) + (7/10) *Entropy (>80k)]

Entropy (<80k) = 0

Entropy (>80k) = - (3/7) log (3/7) – (4/7) log (4/7)

 = 0.9852

Info.gain(S, Taxable income) = Entropy(S) – [(3/10)*(0) +(7/10) *(0.9852)]

= 0.19166

Among all marital status has highest information gain so it becomes the root node

Marital status=Single: Entropy (Single) =1

 Gain(Single=Refund) = E(Single) – [(1/4)*E(Yes)+(3/4)*E(No)]

E(Yes) = 0

E(No) = (-2/3)log(2/3)-(1/3)log(1/3)

 =0.9183

Gain(Single=Refund) = 1 – [(1/3)*0 +(3/4)*0.9183]

 = 0.31127

Gain(Single=Taxable income) = E(Single) – [(1/4)*E(<80)+(3/4)*E(>80)]

 =0.31127

Marital status = Divorced : Entropy(Divorced) =1

 Gain(Divorced=Refund) = E(Divorced) – [(1/2)*E(Yes) +(1/2)*E(No)]

 E(Yes) = 0

 E(No) = 0

Gain = 1

Gain(Divorced=Taxable income) = E(Divorced) – [0+ (2/2)*E(>80k)]

 = 0

4. Explain gradient descent algorithm .Derive an equation of gradient descent rule to minimize

the error.

 If the training examples are not linearly separable, the delta rule converges toward a best -fit

approximation to the target concept. The key idea behind the delta rule is to use gradient descent to

search the hypothesis space of possible weight vectors to find the weights that best fit the training

examples.

The delta training rule is best understood by considering the task of training an unthresholded

perceptron; that is, a linear unit for which the output o is given by

Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold.

In order to derive a weight learning rule for linear units, let us begin by specifying a measure for the

training error of a hypothesis (weight vector), relative to the training examples. Although there are many

ways to define this error, one common measure that will turn out to be especially convenient is

where D is the set of training examples, td is the target output for training example
d, and od is the output of the linear unit for training example d.

By this definition, is simply half the squared difference between the target output td and the hear

unit output od, summed over all training examples. Here we characterize E as a function of , because

the linear unit output o depends on this weight vector. Of course E also depends on the particular set of

training examples, but we assume these are fixed during training, so we do not bother to

write E as an explicit function of these

. In particular, there we show that under certain conditions the hypothesis that minimizes E is also the

most probable hypothesis in H given the training data.

DERIVATION OF THE GRADIENT DESCENT RULE
We can calculate the direction of steepest descent along the error surface.This direction can be

found by computing the derivative of E with respect to each component of the vector This vector

derivative is called the gradient of E with respect to written .

Notice is itself a vector, whose components are the partial derivatives of E with respect to

each of the wi. When interpreted as a vector in weight space, the gradient specijies the direction that

produces the steepest increase in E. The negative of this vector therefore gives the direction of

steepest decrease.

Since the gradient specifies the direction of steepest increase of E, the training rule for gradient descent

is

Where

Here is a positive constant called the learning rate, which determines the step size in the

gradient descent search. The negative sign is present because we want to move the weight vector

in the direction that decreases E. This training rule can also be written in its component form

Where

 ---- (4.5)
differentiating Error function E from

--- (4.6)

where xid denotes the single input component xi for training example d. We now have an

equation that gives in terms of the linear unit inputs xid, outputs Od, and target values td

associated with the training examples. Substituting Equation (4.6) into Equation (4.5) yields the weight

update rule for gradient descent

5.a) Discuss the application of neural network which is used for learning to steer an

autonomous vehicle

 Artificial neural networks (ANNs) provide a general, practical method for learning real-valued,

discrete-valued, and vector-valued target functions from examples.

• A prototypical example of ANN learning is provided by Pomerleau's (1993) system ALVINN,

which uses a learned ANN to steer an autonomous vehicle driving at normal speeds on public

highways.

• The input to the neural network is a 30x32 grid of pixel intensities obtained from a forward-pointed

camera mounted on the vehicle.

• The network output is the direction in which the vehicle is steered.

• Figure illustrates the neural network representation. The network is shown on the left side of the

figure, with the input camera image depicted below it.

• Each node (i.e., circle) in the network diagram corresponds to the output of a single network unit,

and the lines entering the node from below are its inputs.

• There are four units that receive inputs directly from all of the 30 x 32 pixels in the image. These are

called "hidden" units because their output is available only within the network and is not available

as part of the global network output. Each of these four hidden units computes a single real-valued

output based on a weighted combination of its 960 inputs

• These hidden unit outputs are then used as inputs to a second layer of 30 "output" units.

• Each output unit corresponds to a particular steering direction, and the output values of these units

determine which steering direction is recommended most strongly.

• The diagrams on the right side of the figure depict the learned weight values associated with one of

the four hidden units in this ANN.

• The large matrix of black and white boxes on the lower right depicts the weights from the 30 x

32 pixel inputs into the hidden unit. Here, a white box indicates a positive weight, a black box a

negative weight, and the size of the box indicates the weight magnitude.

• The smaller rectangular diagram directly above the large matrix shows the weights from this hidden

unit to each of the 30 output units.

5.b) Explain artificial neural network based on perception concept with diagram

The perceptron is the basic processing element. It has inputs that may come from the

environment or may be the outputs of other perceptrons. Associated with each input, xj connection

weight j = 1, . . . , d, is a connection weight, or synaptic weight wj synapti c weight

and the output, y, in the simplest case is a weighted sum of the inputs

w0 is the intercept value to make the model more general; it is generally modeled as the weight coming

from an extra bias unit.

A perceptron takes a vector of real-valued inputs, calculates a linear combination of these inputs, then

outputs a

1 if the result is greater than some threshold and -1 otherwise. More precisely, given inputs xl through x,,

the output o(x1, . . . , x,) computed by the perceptron is

where each wi is a real-valued constant, or weight, that determines the contribution of input xi to the

perceptron output. Notice the quantity (-wO) is a threshold that the weighted combination of inputs w1

x1+ . . . + wnxn must surpass in order for the perceptron to output a 1.To simplify notation, we

imagine an additional constant input xo = 1, allowing us to write the above inequality as

 , or in vector form as We will sometimes write the perceptron function

as

where

ii) Representational power of Perceptrons

We can view the perceptron as representing a hyperplane decision surface in the n-dimensional space of

instances (i.e., points). The perceptron outputs a 1 for instances lying on one side of the hyperplane and

outputs a -1 for instances lying on the other side, as illustrated in Figure. The equation for this decision

hyperplane is . Of course, some sets of positive and negative examples cannot be

separated by any hyperplane. Those that can be separated are called linearly separable sets of examples.

A Perceptron

a)A set of training examples that are linearly separable b) A set of training examples that are not

linearly separable

A single perceptron can be used to represent many boolean functions. For example, if we assume boolean

values of 1 (true) and -1 (false), then one way to use a two-input perceptron to implement the

AND function is to set the weights wo = -0.3, and w2 = w2 =0 .5. This perceptron can be made to

represent the OR function instead by altering the threshold to wo = -0.3. AND and OR can be viewed as

special cases of m-of-n functions: that is, functions where at least m of the n inputs to the perceptron

must be true. The OR function corresponds to m = 1 and the AND function to m = n. Any m-of-n

function is easily represented using a perceptron by setting all input weights to the same value (e.g.,

0.5) and then setting the threshold wo accordingly. Perceptrons can represent all of the primitive boolean

functions AND, OR, NAND (1 AND), and NOR (1 OR). Unfortunately, however, some boolean

functions cannot be represented by a single perceptron, such as the XOR function whose value is 1 if

and only if x1 ≠ x2. Note the set of linearly non separable training examples corresponds to this XOR

function.

6. Write an algorithm for back propagation which uses stochastic gradient descent

method. Derive the back propagation rule considering the output layer and training rule

for output unit weights.

Derivation of the BACKPROPAGATION Rule

• For each training example d every weight wji is updated by adding to it Δ wji

By using chain rule

7.a) Consider two perceptrons defined by the threshold expression w0+w1x1+w2x2 >0.

Perceptron A has weight values w0=1, w1=2, w2=1.

Perceptron B has weight values w0=0, w1=2, w2=1.

True or False? Perceptron A has more general than perceptron B.

Solution:

 We will say that hj is (strictly) more-general than hk (written hj >g hk) if and only if

 . Finally, we will sometimes find the inverse useful and will say

that hj is more specific than hk when hk is more_general-than hj.

X1 X2 w0+w1x1+w2x2

Perceptron A
w0+w1x1+w2x2

Perceptron B
A more
general

than B

(A B)

0 0 1+2*0+1*0=1 0+2*0+1*0=0 1
0 1 1+2*0+1*1=2 0+2*0+1*1=1 1
1 0 1+2*1+1*0=3 0+2*1+1*0=2 1
1 1 1+2*1+1*1=4 0+2*1+1*1=3 1

B(<x1,x2>) = 1 2x1+x2 > 0 1+2x1+x2 > 0 A(<x1,x2>)) = 1

True.

7.b)Explain the issues in decision tree learning

Solution:

1. Avoiding Overfitting the Data

• The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the

training examples but it can lead to difficulties when there is noise in the data, or when the

number of training examples is too small to produce a representative sample of the true target

function. This algorithm can produce trees that overfit the training examples.

• Overfitting can occur when the training examples contain random errors or noise and when small

numbers of examples are associated with leaf nodes.

Noisy Training Example

<Sunny, Hot, Normal, Strong, ->

• Example is noisy because the correct label is +

• Previously constructed tree misclassifies it

Approaches to avoiding overfitting in decision tree learning

• Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where it

perfectly classifies the training data

• Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree

1.1. Reduced-error pruning :

• Pruning a decision node consists of removing the subtree rooted at that node, making it a leaf

node, and assigning it the most common classification of the training examples affiliated with

that node

• Nodes are removed only if the resulting pruned tree performs no worse than-the original over the

validation set.

• Reduced error pruning has the effect that any leaf node added due to coincidental regularities in

the training set is likely to be pruned because these same coincidences are unlikely to occur in

the validation set

1.2. Rule Post-Pruning :

 Rule post-pruning is successful method for finding high accuracy hypotheses

 Rule post-pruning involves the following steps:

1. Infer the decision tree from the training set, growing the tree until the training data is fit as well as

possible and allowing overfitting to occur.

2. Convert the learned tree into an equivalent set of rules by creating one rule for each path from the

root node to a leaf node.

3. Prune (generalize) each rule by removing any preconditions that result in improving its estimated

accuracy.

4. Sort the pruned rules by their estimated accuracy, and consider them in this sequence when

classifying subsequent instances.

 For example, consider the decision tree above. The leftmost path of the tree in

 below figure is translated into the rule.

 IF (Outlook = Sunny) ^ (Humidity = High) THEN PlayTennis = No

 Given the above rule, rule post-pruning would consider removing the preconditions

(Outlook = Sunny) and (Humidity = High)

It would select whichever of these pruning steps produced the greatest improvement in estimated rule

accuracy

2. Incorporating Continuous-Valued Attributes

There are two methods for Handling Continuous Attributes

1. Define new discrete valued attributes that partition the continuous attribute value into a discrete set of

intervals.

E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C}

2. Using thresholds for splitting nodes

e.g., A ≤ a produces subsets A ≤ a and A > a

What threshold-based boolean attribute should be defined based on Temperature?

Pick a threshold, c, that produces the greatest information gain

• In the current example, there are two candidate thresholds, corresponding to the values of

Temperature at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2. The

information gain can then be computed for each of the candidate attributes, Temperature >54, and

Temperature >85 and the best can be selected (Temperature >54)

3. Alternative Measures for Selecting Attributes

One Approach: Use GainRatio instead of Gain

• The gain ratio measure penalizes attributes by incorporating a split information, that is sensitive

to how broadly and uniformly the attribute splits the data

• where Si is subset of S, for which attribute A has value vi

4. Handling Training Examples with Missing Attribute Values

 The data which is available may contain missing values for some attributes

Example:

Outlook Temp Humidity Wind PlayTennis

Sunny Hot High Light No

Sunny Hot High Strong No

Sunny Mild ??? Light No

Sunny Cool Normal Light Yes

Sunny Mild Normal Strong Yes

Strategies for dealing with the missing attribute value

• If node n test A, assign most common value of A among other training examples sorted to node n

• Assign most common value of A among other training examples with same target

value. In this case it is high

5. Handling Attributes with Differing Costs
• In some learning tasks the instance attributes may have associated costs.

• For example, in learning to classify medical diseases we might describe patients in terms

of attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc. These

attributes vary significantly in their costs, both in terms of monetary cost and cost to

patient comfort.

• In such tasks, we would prefer decision trees that use low-cost attributes where possible,

relying on high-cost attributes only when needed to produce reliable classifications.

8) Create and explain the decision tree for the following transactions using ID3 algorithm.
Day Outlook Temperature Humidity Wind Play Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rainy Mild High Weak Yes

D5 Rainy Cool Normal Weak Yes

D6 Rainy Cool Normal Strong No

D7 Overcast Cool Normal Weak Yes

D8 Sunny Mild High Weak No

Entropy(S) = -(4/8)log (4/8)-(4/8)log (4/8)

 = 1 (equal number of positive and negative instances in each group)

Info.gain(S,Outlook) = Entropy(S) – [(4/8)* Entropy(sunny) +(4/8) *Entropy(Rainy)]

Entropy (sunny) = -(2/4) log(2/4) – (2/4) log(2/4)

 = 1 (equal number of positive and negative instances in each group)

Entropy (Rainy) = -(2/4) log(2/4) – (2/4) log(2/4)

 = 1 (equal number of positive and negative instances in each group)

Hence

Info.gain(S,Outlook) = Entropy(S) – [(4/8)*1 +(4/8) *1]

 = 1- [(4/8) +(4/8)]

 = 1 -1

 = 0

Info.gain(S,Temperature) = Entropy(S) – [(5/8)* Entropy(Hot) +(3/8) *Entropy(Cool)]

Entropy (Hot) = -(4/5) log(4/5) – (1/5) log(1/5)

 = -0.2575 -0.4644

 = - 0.7219

Entropy (Cool) = -(3/3) log(3/3) -0

 = 0 (All instances are in same group)

Info.gain(S,Temperature) = Entropy(S) – [(5/8)*(-0.7219) +(3/8) *(0)]

= 1- 0.4512

= 0.55

Info.gain(S,Humidity) = Entropy(S) – [(5/8)* Entropy(High) +(3/8) *Entropy(Normal)]

Entropy (High) = -(4/5) log(4/5) – (1/5) log(1/5)

 = -0.2575 - 0.4644

 = - 0.7219

Entropy (Normal) = -(3/3) log(3/3) -0

 = 0 (All instances are in same group)

Info.gain(S,Humidity) = Entropy(S) – [(5/8)*(-0.7219) +(3/8) *(0)]

= 1- 0.4512

= 0.55

Info.gain(S,Wind) = Entropy(S) – [(4/8)* Entropy(Strong) +(4/8) *Entropy(Weakl)]

Entropy (Strong) = -(4/4) log(4/4) – 0

 = (All instances are in same group)

Entropy (Weak) = 0-(4/4) log(4/4)

 = 0 (All instances are in same group)

Info.gain(S,Wind) = Entropy(S) – [(4/8)* 0 +(4/8) *0)]

= 1-0

=1

Info.gain(S,Outlook) = 0

Info.gain(S,Temperature) =0.55

Info.gain(S,Humidity) = 0.55

Info.gain(S,Wind) =1

Since information gain of Wind is more than other attribute,it is selected as root node of the

decision tree.

Instances - D1,D2,D3,D4 are added as left subtree and D5,D6,D7,D8 are added as right subtree

under Root node. Since all the subsets belongs to the same group, they are labeled as Yes and

No respectively in the level -2 of the tree

Wind

Yes No

Stron

g
Weak

