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Question 

# 
Description Marks Distribution Max 

Marks 

1 
 Concept of  decision tree learning 

 Decision tree using ID3 algorithm 

5M 
5M 10M 10 M 

2 

 

 

 

 

a) 

 

 Calculating entropy 

 Calculating information gain 

2.5M 
2.5M 

5 M 

10 M 

b) 

 Listing the appropriate problems   5M 

 

 

 

5 M 

3 

 

 

 

 Calculating the overall entropy 

 Calculating individual attribute gain values 

along with entropy 

 Identifying root node and sub nodes 

 Constructing final decision tree 

2M 
 
4M 
2M 
2M 

10M 

 

 

 

10 M 

4 

 

 

 

 Gradient descent algorithm 

 Deriving the equation 

 
5M 
 
5M 10 M 10 M 

5 

a) 

 Application of neural network with explanation 

 Diagramatic representation 
3M 

2M 
5 M 

10 M 

b) 

 Explanation of perceptron concept 

 Diagrametic representation 

3 M 

2M 

 

5 M 

6 
 Backpropagation algorithm 

 Deriving the derivatives rule 

4M 

6M 
10 M 10M 

7 

a) 

 Solving perceptron A and B  

 Justification 

      2M 

2M 

 

4M 

10M 

b) 

 Issues in decision tree learning 

1. Avoiding Overfitting the Data  Reduced error 

pruning  Rule post-pruning  
2. Incorporating Continuous-Valued Attributes  

 

1.2*5=6M 

 

6M 



3. Alternative Measures for Selecting Attributes  
4. Handling Training Examples with Missing 

Attribute Values  
5. Handling Attributes with Differing Costs  

 

8) 

 Calculating the overall entropy 

 Calculating individual attribute gain values 

along with entropy 

 Identifying root node and sub nodes 

 Constructing final decision tree 

2M 
4M 
 
2M 
2M 

10M 10M 

 

 
Internal Assessment Test 2 Solutions– Oct.2019 

Sub: Machine Learning Code: 15CS73 

Date: 14/10/2019 Duration: 90mins 
Max 

Marks:  50 
Sem: VII Branch: ISE A,B 

Note: Answer Any Five Questions 

1. Explain the concept of decision tree learning. Discuss the necessary measure required to select the 

attributes for building a decision tree using ID3 algorithm 

Decision tree learning is a method for approximating discrete-valued target functions, in which 

the learned function is represented by a decision tree.  
 

Decision tree representation 
 

 Decision trees classify instances by sorting them down the tree from the root to some 

leaf node, which provides the classification of the instance.  

 Each node in the tree specifies a test of some attribute of the instance, and each branch 

descending from that node corresponds to one of the possible values for this attribute.  

 An instance is classified by starting at the root node of the tree, testing the attribute 

specified by this node, then moving down the tree branch corresponding to the value 

of the attribute in the given example. This process is then repeated for the subtree 

rooted at the new node. 
 

Figure 1 illustrates a typical learned decision tree. 
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This decision tree classifies Saturday mornings according to whether they are suitable for 

playing tennis. For example, the instance 



 
 

would be sorted down the left most branch of this decision tree and would therefore be 

classified as a negative instance (i.e., the tree predicts that PlayTennis = No). 

 

In general, decision trees represent a disjunction of conjunctions of constraints on the attribute 

values of instances. For example, the decision tree shown in Figure 1 corresponds to the 

expression 
 

 
 

ID3 Algorithm: 

ID3 stands for Iterative Dichotomiser 3  

• ID3 basic algorithm learns decision trees by constructing them top-down, beginning with 

the question "which attribute should be tested at the root of the tree?” The best attribute is 

selected and used as the test at the root node of the tree. 
 

• A descendant of the root node is then created for each possible value of this attribute, and 

the training examples are sorted to the appropriate descendant node. 
 

• The entire process is then repeated using the training examples associated with each 

descendant node to select the best attribute to test at that point in the tree. 

Which Attribute Is the Best Classifier? 
 

• The central choice in the ID3 algorithm is selecting which attribute to test at each 

             node in the tree. 

• ID3 uses information gain measure to select among the candidate attributes at  each step while 

growing the tree. 

• To define information gain, we begin by defining a measure called entropy.  

                Entropy measures the impurity of a collection of examples.  

 

 
Where,  

p+ is the proportion of positive examples in S  

p- is the proportion of negative examples in S.  

  

• The entropy is 0 if all members of S belong to the same class  

• The entropy is 1 when the collection contains an equal number of positive and  negative 

examples  

• If the collection contains unequal numbers of positive and negative examples, the  entropy is 

between 0 and 1  

 

Information gain, is the expected reduction in entropy caused by partitioning the  examples according to 

this attribute. 

• The information gain, Gain(S,A) of an attribute A, relative to a collection of examples S, is 

defined as 

 
  



 

2.a) For the transaction shown in the table compute the following. 

i) Entropy of the collection of transaction records of the table with respect to classification. 

ii) What are the information gain of a1 and a2 relative to the transactions of the table. 

Instance 1 2 3 4 5 6 7 8 9 

a1 T T T F F F F T F 

a2 T T F F T T F F T 

Target 

Class 
+ + - + - - - + - 

 

i) S is the given collection , 

 
Entropy(S)    =  1  ,when  equal  number  of  positive  and  negative examples. 

 

ii)         Information gain(S,A2) 

  

 
 

Gain(S,A2)    = 1- { (4/6)*Entropy(T) + (2/6)* Entropy(F)} 

  

 =1- {(4/6)*(equal no.of + and -) + (2/6)*(equal no.of + and -)} 

                        =  1-{(4/6)*1 + (2/6)*1} 

 = 0 

 

 

 

 



 

 

 

2.b) Write the appropriate problems used for decision tree learning & List the applications of 

decision tree learning. 
 

Appropriate problems for decision tree learning 
 

Although a variety of decision tree learning methods have been developed with somewhat 

differing capabilities and requirements, decision tree learning is  generally best suited to 

problems with the following characteristics: 
 

• Instances are represented by attribute-value pairs. Instances are described by a fixed 

set of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation for 

decision tree learning is when each attribute takes on a small number of disjoint possible 

values (e.g., Hot, Mild, Cold).  

• The target function has discrete output values. The decision tree assigns a boolean 

classification (e.g., yes or no) to each example. Decision tree methods easily extend to 

learning functions with more than two possible output values.  

• Disjunctive descriptions may be required. As noted above, decision trees naturally 

represent disjunctive expressions. 

• The training data may contain errors. Decision tree learning methods are robust to 

errors, both errors in classifications of the training examples and errors in the attribute 

values that describe these examples. 

• The training data may contain missing attribute values. Decision tree methods can be 

used even when some training examples have unknown values (e.g., if the Humidity of the 

day is known for only some of the training examples). 
 

Applications : 

Decision tree learning has therefore been applied to problems such as learning to classify 

medical patients by their disease, equipment malfunctions by their cause, and loan applicants by 

their likelihood of defaulting on payments.  

Such problems, in which the task is to classify examples into one of a discrete set of possible 

categories are often referred to as classification problems.   

 

3. Create and explain the decision tree for the following transactions using ID3 algorithm. 

Tid Refund Marital Status 
Taxable 

Income 
Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 

 

Entropy(S) =  -(3/10)log (3/10)-(7/10)log (7/10) 

   =  0.8813       

Info.gain(S,Refund) = Entropy(S) – [  (3/10)* Entropy(Yes) +(7/10) *Entropy(No)] 



    

Entropy (Yes) = 0 bcz both belongs to –ve class 

 

Entropy (No) = -(3/7) log(3/7) – (4/7) log(4/7) 

   = 0.9852 

 

Hence  

Info.gain(S, Refund)  = Entropy(S) – [  (3/10)*0 +(7/10) *0.9852] 

    = 0.8813 - [0 +(7/10)*0.9852] 

    =  0.19166 

Info.gain(S, Marital status) =  

Entropy(S) – [  (4/10)* Entropy (Single) +(4/10) *Entropy (Married)+(2/10)*Entropy (Divorced)] 

   

Entropy (Single)  = 1    

Entropy (Married) = 0  

Entropy (Divorced) = 1 

Info.gain(S, Marital Status)  = Entropy(S) – [  (4/10)*(1 ) + (4/10) *(0) +((2/10)*1] 

= 0.2813 

Info.gain(S, Taxable Income) = Entropy(S) – [  (3/10)* Entropy (<80k) + (7/10) *Entropy (>80k)] 

   

Entropy (<80k)  = 0    

Entropy (>80k) = - (3/7) log (3/7) – (4/7) log (4/7) 

                                  = 0.9852 

Info.gain(S, Taxable income )  = Entropy(S) – [  (3/10)*(0 ) +(7/10) *(0.9852)] 

= 0.19166 

Among all marital status has highest information gain so it becomes the root node 

 

Marital status=Single: Entropy (Single) =1 

          Gain(Single=Refund) = E(Single) – [(1/4)*E(Yes)+(3/4)*E(No)] 

E(Yes) = 0 

E(No) = (-2/3)log(2/3)-(1/3)log(1/3) 

           =0.9183 

Gain(Single=Refund) = 1 – [(1/3)*0 +(3/4)*0.9183] 

                                    = 0.31127 

Gain(Single=Taxable income) = E(Single) – [(1/4)*E(<80)+(3/4)*E(>80)] 

                                                  =0.31127 

Marital status = Divorced  : Entropy(Divorced) =1 

 Gain(Divorced=Refund) = E(Divorced) – [(1/2)*E(Yes) +(1/2)*E(No)] 

                 E(Yes) = 0 

                 E(No) = 0 

Gain = 1 

Gain(Divorced=Taxable income) = E(Divorced) – [0+ (2/2)*E(>80k)] 

                                                       = 0 
                 

4. Explain gradient descent algorithm .Derive an equation of gradient descent rule to minimize 

the error. 

 If the training examples are not linearly separable, the delta rule converges toward a best -fit 

approximation to the target concept. The key idea behind the delta rule is to use gradient descent to 

search the hypothesis space of possible weight vectors to find the weights that best fit the training 

examples. 



 

 
The delta training rule is best understood by considering the task of training an unthresholded 

perceptron; that is, a linear unit for which the output o is given by 
 
 
 
Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold. 

 
In order to derive a weight learning rule for linear units, let us begin by specifying a measure for the 

training error of a hypothesis (weight vector), relative to the training examples. Although there are many 

ways to define this error, one common measure that will turn out to be especially convenient is 
 
 
 
 

where D is the set of training examples, td is the target output for training example 
d, and od is the output of the linear unit for training example d.



 

By this definition,               is simply half the squared difference between the target output td and the hear 

unit output od, summed over all training examples. Here we characterize E as a function of   , because 

the linear unit output o depends on this weight vector. Of course E also depends on the particular set of 

training examples, but we assume these are fixed during training, so we do       not       bother       to       

write       E       as       an       explicit       function       of       these 

. In particular, there we show that under certain conditions the hypothesis that minimizes E is also the 

most probable hypothesis in H given the training data. 
 
 
DERIVATION OF THE GRADIENT DESCENT RULE 
We can calculate the direction of steepest descent along the error surface.This direction can be 

found by computing the derivative of E with respect to each component of the vector  This vector 

derivative is called the gradient of E with respect to   written . 
 

 
 
 
 
 
Notice                  is itself a vector, whose components are the partial derivatives of E with respect to 

each of the wi. When interpreted as a vector in weight space, the gradient specijies the direction that 

produces the steepest increase in E. The negative of this vector therefore gives the direction of 

steepest decrease. 

Since the gradient specifies the direction of steepest increase of E, the training rule for gradient descent 

is 

 
 
Where 

 

 
 

Here    is a positive constant called the learning rate, which determines the step size in the 

gradient descent search. The negative sign is present because we want to move the weight vector 

in the direction that decreases E. This training rule can also be written in its component form 
 
 
 
 

Where 

      ---- (4.5) 
differentiating Error function E  from



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

--- (4.6) 
 
where xid  denotes the single  input  component  xi   for  training  example d.  We  now have an 

equation  that  gives  in  terms  of the  linear  unit  inputs  xid,  outputs Od,  and  target  values  td 

associated with the training examples. Substituting Equation (4.6) into Equation (4.5) yields the weight 

update rule for gradient descent 

 
5.a) Discuss the application of neural network which is used for learning to steer an 

autonomous vehicle 

 

     Artificial neural networks (ANNs) provide a general, practical method  for learning real-valued, 

discrete-valued, and vector-valued target  functions from examples.  



  

• A prototypical example of ANN learning is provided by Pomerleau's (1993) system ALVINN, 

which uses a learned ANN to steer an autonomous vehicle  driving at normal speeds on public 

highways. 

• The input to the neural network is a 30x32 grid of pixel intensities obtained from a forward-pointed 

camera mounted on the vehicle. 

• The network output is the direction in which the vehicle is steered. 

• Figure illustrates the neural network representation. The network is shown on the left side of the 

figure, with the input camera image depicted below it. 

• Each node (i.e., circle) in the network diagram corresponds to the output of a single network unit, 

and the lines entering the node from below are its inputs.  

• There are four units that receive inputs directly from all of the 30 x 32 pixels in the image. These are 

called "hidden" units because their output is available only within the network and is not available 

as part of the global network output. Each  of these four hidden units computes a single real-valued 

output based on a  weighted combination of its 960 inputs 

• These hidden unit outputs are then used as inputs to a second layer of 30 "output" units. 

• Each output unit corresponds to a particular steering direction, and the output values of these units 

determine which steering direction is recommended most strongly.  

• The diagrams on the right side of the figure depict the learned weight values associated with one of 

the four hidden units in this ANN.  

• The large matrix of black and white boxes on the lower right depicts the weights from the 30 x 

32 pixel inputs into the hidden unit. Here, a white box indicates a positive weight, a black box a 

negative weight, and the size of the box indicates the weight magnitude.  

• The smaller rectangular diagram directly above the large matrix shows the weights from this hidden 

unit to each of the 30 output units. 

5.b) Explain artificial neural network based on perception concept with diagram 
  



The perceptron is the basic processing element.  It  has  inputs  that  may  come  from  the 

environment  or  may  be  the  outputs  of  other  perceptrons.  Associated with each input, xj  connection 

weight   j = 1, . . . , d, is a connection weight, or synaptic weight wj synapti c weight                

and the output, y, in the simplest case is a weighted sum of the inputs 
 
 
 
 
 
w0 is the intercept value to make the model more general; it is generally modeled as the weight coming 

from an extra bias unit. 

A perceptron takes a vector of real-valued inputs, calculates a linear combination of these inputs, then 

outputs a 

1 if the result is greater than some threshold and -1 otherwise. More precisely, given inputs xl through x,, 

the output o(x1, . . . , x,) computed by the perceptron is 
 
 
 
 
 
where each wi is a real-valued constant, or weight, that determines the contribution of input xi to the 

perceptron output. Notice the quantity (-wO) is a threshold that the weighted combination of inputs w1  

x1+ . . . + wnxn  must surpass in order for the perceptron to output a 1.To simplify notation,  we  

imagine  an additional  constant  input  xo  = 1,  allowing  us  to  write the  above inequality as  

 , or in vector form as    We will sometimes write the perceptron function 

as 
 
 
 
 
where 

 
ii) Representational power of Perceptrons 

 

We can view the perceptron as representing a hyperplane decision surface in the n-dimensional space of 

instances (i.e., points). The perceptron outputs a 1 for instances lying on one side of the hyperplane and 

outputs a -1 for instances lying on the other side, as illustrated in Figure. The equation for this decision 

hyperplane is    .  Of course, some sets of positive and negative examples cannot be 

separated by any hyperplane. Those that can be separated are called linearly separable sets of examples.



A Perceptron  

 
 

a)A set of training examples that are linearly separable      b) A set of training examples that are not 

linearly separable 

A single perceptron can be used to represent many boolean functions. For example, if we assume boolean  

values  of 1  (true)  and  -1  (false),  then  one  way to  use  a  two-input  perceptron  to implement the 

AND function is to set the weights wo = -0.3, and w2 = w2 =0 .5. This perceptron can be made to 

represent the OR function instead by altering the threshold to wo = -0.3. AND and OR can be viewed as 

special cases of m-of-n functions: that is, functions where at least m of the n inputs to the perceptron 

must be true. The OR function corresponds to m = 1 and the AND function to m = n. Any m-of-n 

function is easily represented using a perceptron by setting all input weights to the same value (e.g., 

0.5) and then setting the threshold wo accordingly. Perceptrons can represent all of the primitive boolean 

functions AND, OR, NAND (1 AND), and NOR (1 OR). Unfortunately, however, some boolean 

functions cannot be represented by a single perceptron, such as the XOR function whose value is 1 if 

and only if x1  ≠ x2. Note the set of linearly non separable training examples corresponds to this XOR 

function. 
 
 



 

 

6. Write an algorithm for back propagation which uses stochastic gradient descent 

method. Derive the back propagation rule considering the output layer and training rule 

for output unit weights. 
 

 
 

 

 
 

 

 



 

 

 

Derivation of the BACKPROPAGATION Rule 

 

• For each training example d every weight wji is updated by adding to it Δ wji  

 

By using chain rule



 

 



 

 
7.a) Consider two perceptrons defined by the threshold expression w0+w1x1+w2x2 >0. 

Perceptron A has weight values w0=1, w1=2, w2=1. 

Perceptron B has weight values w0=0, w1=2, w2=1. 

True or False? Perceptron A has more general than perceptron B.  

 

Solution: 

 We will say that hj is (strictly) more-general than hk (written hj >g hk) if and only if 

 . Finally, we will sometimes find the inverse useful and will say 

that hj is more specific than hk when hk  is more_general-than hj.



 

 

X1 X2 w0+w1x1+w2x2 

Perceptron A 
w0+w1x1+w2x2 

Perceptron B 
A more 
general 

than B 

(A B) 

0 0 1+2*0+1*0=1 0+2*0+1*0=0 1 
0 1 1+2*0+1*1=2 0+2*0+1*1=1 1 
1 0 1+2*1+1*0=3 0+2*1+1*0=2 1 
1 1 1+2*1+1*1=4 0+2*1+1*1=3 1 

 
B(<x1,x2>) = 1 2x1+x2 > 0  1+2x1+x2 > 0  A(<x1,x2>)) = 1 

 
True. 

 

7.b)Explain the issues in decision tree learning 

 

Solution: 

1. Avoiding Overfitting the Data 

 
• The ID3 algorithm grows each branch of the tree just deeply enough to perfectly  classify the 

training examples but it can lead to difficulties when there is noise in  the data, or when the 

number of training examples is too small to produce a  representative sample of the true target 

function. This algorithm can produce trees that overfit the training examples.  

• Overfitting can occur when the training examples contain random errors or noise and when small 

numbers of examples are associated with leaf nodes.  

 

Noisy Training Example  

<Sunny, Hot, Normal, Strong, ->  

• Example is noisy because the correct label is +  

• Previously constructed tree misclassifies it  

 

Approaches to avoiding overfitting in decision tree learning 

 

• Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where  it 

perfectly classifies the training data  

• Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree  

 

1.1. Reduced-error pruning : 

• Pruning a decision node consists of removing the subtree rooted at that node,  making it a leaf 

node, and assigning it the most common classification of the  training examples affiliated with 

that node  

• Nodes are removed only if the resulting pruned tree performs no worse than-the original over the 

validation set.  

• Reduced error pruning has the effect that any leaf node added due to coincidental  regularities in 

the training set is likely to be pruned because these same  coincidences are unlikely to occur in 

the validation set  

 

1.2. Rule Post-Pruning : 
 

 Rule post-pruning is successful method for finding high accuracy hypotheses  

       Rule post-pruning involves the following steps:  
 

1. Infer the decision tree from the training set, growing the tree until the training data is fit as well as 

possible and allowing overfitting to occur.  

2. Convert the learned tree into an equivalent set of rules by creating one rule for each path from the 

root node to a leaf node.  



 

3. Prune (generalize) each rule by removing any preconditions that result in improving its estimated 

accuracy.  

4. Sort the pruned rules by their estimated accuracy, and consider them in this sequence when 

classifying subsequent instances.  

 For example, consider the decision tree above. The leftmost path of the tree in

 below figure is translated into the rule.  

 

                     IF (Outlook = Sunny) ^ (Humidity = High)  THEN PlayTennis = No  

                         Given the above rule, rule post-pruning would consider removing the       preconditions 

(Outlook = Sunny) and (Humidity = High) 

 

It would select whichever of these pruning steps produced the greatest improvement in estimated rule 

accuracy 

 

2. Incorporating Continuous-Valued Attributes 
 

There are two methods for Handling Continuous Attributes  

1. Define new discrete valued attributes that partition the continuous attribute value  into a discrete set of 

intervals.  

E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C}  

2. Using thresholds for splitting nodes  

e.g., A ≤ a produces subsets A ≤ a and A > a  

What threshold-based boolean attribute should be defined based on Temperature? 
 

 
Pick a threshold, c, that produces the greatest information gain  

• In the current example, there are two candidate thresholds, corresponding to the  values of 

Temperature at which the value of PlayTennis changes: (48 + 60)/2, and  (80 + 90)/2. The 

information gain can then be computed for each of the candidate  attributes, Temperature >54, and 

Temperature >85 and the best can be selected  (Temperature >54)  

 

3. Alternative Measures for Selecting Attributes 
 

One Approach: Use GainRatio instead of Gain  

• The gain ratio measure penalizes attributes by incorporating a split information,  that is sensitive 

to how broadly and uniformly the attribute splits the data  

 

 
 

• where Si is subset of S, for which attribute A has value vi  

 

4. Handling Training Examples with Missing Attribute Values 
 

 The data which is available may contain missing values for some attributes  

Example: 

 

Outlook Temp Humidity Wind PlayTennis 

Sunny Hot High Light No 

Sunny Hot High Strong No 

Sunny Mild ??? Light No 



 

Sunny Cool Normal Light Yes 

Sunny Mild Normal Strong Yes 

 

Strategies for dealing with the missing attribute value  

• If node n test A, assign most common value of A among other training examples  sorted to node n  

• Assign most common value of A among other training examples with same target  

value. In this case it is high  

 

5. Handling Attributes with Differing Costs 
• In some learning tasks the instance attributes may have associated costs.  

• For example, in learning to classify medical diseases we might describe patients in terms 

of attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc. These 

attributes vary significantly in their costs, both in terms of monetary cost and cost to 

patient comfort.  

• In such tasks, we would prefer decision trees that use low-cost attributes where possible, 

relying on high-cost attributes only when needed to produce reliable classifications. 
 

8) Create and explain the decision tree for the following transactions using ID3 algorithm. 
Day Outlook Temperature Humidity Wind Play Tennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rainy Mild High Weak Yes 

D5 Rainy Cool Normal Weak Yes 

D6 Rainy Cool Normal Strong No 

D7 Overcast Cool Normal Weak Yes 

D8 Sunny Mild High Weak No 

 

Entropy(S) =  -(4/8)log (4/8)-(4/8)log (4/8) 

   =  1       (equal number of positive and negative instances in each group) 

 

Info.gain(S,Outlook) = Entropy(S) – [  (4/8)* Entropy(sunny) +(4/8) *Entropy(Rainy)] 

    

Entropy (sunny) = -(2/4) log(2/4) – (2/4) log(2/4) 

   =  1 (equal number of positive and negative instances in each group) 

Entropy (Rainy) = -(2/4) log(2/4) – (2/4) log(2/4) 

   =  1 (equal number of positive and negative instances in each group) 

 

Hence  

Info.gain(S,Outlook)  = Entropy(S) – [  (4/8)*1 +(4/8) *1] 

    = 1- [(4/8) +(4/8)] 

    =  1 -1 

    = 0 

Info.gain(S,Temperature) = Entropy(S) – [  (5/8)* Entropy(Hot) +(3/8) *Entropy(Cool)] 

   

Entropy (Hot)  = -(4/5) log(4/5) – (1/5) log(1/5) 

    =  -0.2575 -0.4644 

    = - 0.7219    

Entropy (Cool)  = -(3/3) log(3/3) -0  

    =  0 (All instances are in same group) 

Info.gain(S,Temperature)  = Entropy(S) – [  (5/8)*(-0.7219 ) +(3/8) *(0)] 

= 1- 0.4512 

= 0.55 



 

Info.gain(S,Humidity) = Entropy(S) – [  (5/8)* Entropy(High) +(3/8) *Entropy(Normal)] 

   

Entropy (High)  = -(4/5) log(4/5) – (1/5) log(1/5) 

    =  -0.2575 - 0.4644 

    = - 0.7219    

Entropy (Normal) = -(3/3) log(3/3) -0  

    =  0 (All instances are in same group) 

Info.gain(S,Humidity )  = Entropy(S) – [  (5/8)*(-0.7219 ) +(3/8) *(0)] 

= 1- 0.4512 

= 0.55 

 

 

Info.gain(S,Wind) = Entropy(S) – [  (4/8)* Entropy(Strong) +(4/8) *Entropy(Weakl)] 

   

Entropy (Strong)  = -(4/4) log(4/4) – 0 

      =   (All instances are in same group) 

   

Entropy (Weak)  = 0-(4/4) log(4/4) 

     =  0 (All instances are in same group) 

 

Info.gain(S,Wind)  = Entropy(S) – [  (4/8)* 0 +(4/8) *0)] 

= 1-0 

=1 

Info.gain(S,Outlook) = 0 

Info.gain(S,Temperature) =0.55 

Info.gain(S,Humidity )  = 0.55 

Info.gain(S,Wind) =1 

 

 

Since information gain of Wind is more than other attribute,it is selected as root node of the 

decision tree. 

Instances - D1,D2,D3,D4 are added as left subtree and D5,D6,D7,D8 are added as right subtree 

under Root node. Since all the subsets belongs to the same group, they are labeled as Yes and 

No respectively in the level -2 of the tree 
 

  

 

 

   

Wind 

Yes No 

Stron
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