

Internal Assessment Test 2

October 2019

Sub: Programming in Java
Sub Code:

15CS561 Branch: TCE/ECE

Date

:

15 -10 -19 Duration:90 m Max Marks: 50
Sem /Sec:

VI B/C OBE

Answer any FIVE FULL

Questions

Marks CO R

B

T

1 (a) What is constructor? Name and explain different types of constructor with

example program.

Constructor is a special type of member method which is invoked automatically

when the object gets created. Constructors are used for object initialization. They

have same name as that of the class. Since they are called automatically, there is no

return type for them. Constructors may or may not take parameters.

 Every class is provided with a default constructor which initializes all the

data members to respective default values. (Default for numeric types is

zero, for character and strings it is null and default value for Boolean type is

false.)

 In the statement classname ob= new classname(); the term classname() is

actually a constructor call.

 If the programmer does not provide any constructor of his own, then the

above statement will call default constructor.

 If the programmer defines any constructor, then default constructor of Java

cannot be used.

 So, if the programmer defines any parameterized constructor and later would

like to create an object without explicit initialization, he has to provide the

default constructor by his own. For example, the above program, if we

remove ordinary constructor, the statements like Box b1=new Box(); will

generate error. To avoid the error, we should write a default constructor like

– Box(){ } Now, all the data members will be set to their respective default

values.

class Box

{

double w, h, d;

double volume()

{

return w*h*d;

}

Box() //ordinary constructor

10

CO3
L1,

L4

{

w=h=d=5;

}

Box(double wd, double ht, double dp) //parameterized constructor

{

w=wd;

h=ht;

d=dp;

}

}

2. (a) Write short notes on: (i) this keyword (ii) static

(i)Sometimes a method will need to refer to the object that invoked it. To allow this,

Java defines the this keyword. This can be used inside any method to refer to the

current object. That is, this is always a reference to the object which invokes the

method call.

(ii) When a member is declared static, it can be accessed before any objects of its

class are created, and without reference to any object. Instance variables declared as

static are global variables. When objects of its class are declared, no copy of a static

variable is made. Instead, all instances of the class share the same static variable.

Methods declared as static have several restrictions:

 They can only call other static methods.

 They must only access static data.

 They cannot refer to this or super in any way.

class StaticDemo

{

static int a = 42;

static int b = 99;

static void callme()

{

 System.out.println("Inside static method, a = " + a);

}

}

class StaticByName

{

public static void main(String args[])

{

StaticDemo.callme();

System.out.println("Inside main, b = " + StaticDemo.b);

}

}

Output:

Inside static method, a = 42

Inside main, b = 99

6

CO3 L2

2.b Write a Java program to display the factorial of a number using recursion.

class Factorial

{

int fact(int n)

{

if (n==0)

return 1;

return n*fact(n-1);

}

}

class FactDemo

{

public static void main(String args[])

{

Factorial f= new Factorial();

System.out.println("Factorial 3 is "+ f.fact(3));

System.out.println("Factorial 8 is "+ f.fact(8));

}

}

4

CO3 L3

3. List and explain the uses of the keyword final with Java programs.
The keyword final can be used in three situations in Java:

 To create the equivalent of a named constant.

 To prevent method overriding

 To prevent Inheritance

To create the equivalent of a named constant: A variable can be declared as final.

Doing so prevents

its contents from being modified. This means that you must initialize a final variable

when it is declared.

For example:

final int FILE_NEW = 1;

To prevent method overriding: Sometimes, we do not want a super class method

to be overridden in the subclass. Instead, the same super class method definition has

to be used by every subclass. In such situation, we can prefix a method with the

keyword final as shown below –

class A

{

final void meth()

{

System.out.println("This is a final method.");

}

}

class B extends A

{

void meth() // ERROR! Can't override.
{

System.out.println("Illegal!");

 10

CO3
L1,

L3

}

}

To prevent Inheritance: As we have discussed earlier, the subclass is treated as a

specialized class and super class is most generalized class. During multi-level

inheritance, the bottom most class will be with all the features of real-time and

hence it should not be inherited further. In such situations, we can prevent a

particular class from inheriting further, using the keyword final. For example –

final class A

{

// ...

}

class B extends A // ERROR! Can't subclass A

{

// ...

}

4. List and explain the uses of the keyword super with Java programs.
In Java, the keyword super can be used in following situations:

 To invoke super class constructor within the subclass constructor

 To access super class member (variable or method) when there is a duplicate

member name in

the subclass

To invoke super class constructor within the subclass constructor: Sometimes,

we may need to initialize the members of super class while creating subclass object.

Writing such a code in subclass constructor may lead to redundancy in code. For

example,

class Box

{

double w, h, b;

Box(double wd, double ht, double br)

{

w=wd; h=ht; b=br;

}

}

class ColourBox extends Box

{

int colour;

ColourBox(double wd, double ht, double br, int c)

{

w=wd; h=ht; b=br; //code redundancy

colour=c;

}

}

To access super class member variable when there is a duplicate variable name

 [10]

CO3
L1,

L3

in the subclass: This form of super is most applicable to situations in which

member names of a subclass hide members by the same name in the super class.

class A

{

int a;

}
class B extends A

{

int a; //duplicate variable a
B(int x, int y)

{

super.a=x; //accessing superclass a
a=y; //accessing own member a

}

void disp()

{

System.out.println("super class a: "+ super.a);

System.out.println("sub class a: "+ a);

}

}

class SuperDemo

{

public static void main(String args[])

{

B ob=new B(2,3);

ob.disp();

}

}

5. Distinguish between method overloading and method overriding. Write Java

programs to demonstrate the use of method overloading and method

overriding.

Having more than one method with a same name is called as method overloading.

To implement this concept, the constraints are:

 The number of arguments should be different, and/or

 Type of the arguments must be different.

class Overload

{

void test() //method without any arguments

{

System.out.println("No parameters");

}

void test(int a) //method with one integer argument

{

System.out.println("Integer a: " + a);

}

void test(int a, int b) //two arguments

{

System.out.println("With two arguments : " + a + " " + b);

 [10]

CO3 L2

}

void test(double a) //one argument of double type

{

System.out.println("double a: " + a);

}

}

class OverloadDemo

{

public static void main(String args[])

{

Overload ob = new Overload();

ob.test();

ob.test(10);

ob.test(10, 20);

ob.test(123.25);

}

}

In a class hierarchy, when a method in a subclass has the same name and type

signature as a method in its super class, then the method in the subclass is said to

override the method in the super class. When an overridden method is called from

within a subclass, it will always refer to the version of that method defined by the

subclass. The version of the method defined by the super class will be hidden.

class A

{

int i, j;

A(int a, int b)

{

i = a;

j = b;

}

void show() //suppressed
{

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A

{

int k;

B(int a, int b, int c)

{

super(a, b);

k = c;

}

void show() //Overridden method
{

System.out.println("k: " + k);

}

}

class Override

{

public static void main(String args[])

{

B subOb = new B(1, 2, 3);

subOb.show();
}

}

6. Create a Java class called Student with the following instance variables (USN,

Name, Branch, Phone Number). Write a Java program to create 2 Student

objects and print USN, Name, Branch and phone number with suitable

message.

import java.io.*;

class Student

{

 String usn, name, branch;

 long ph;

 Student()

 {

 usn = name = branch = "no value";

 ph = 0;

 }

 void read_data(String u, String n, String b, long p)

 {

 usn = u;

 name = n;

 branch = b;

 ph =p;

 }

void display()

 {

 System.out.println(usn + "\t" + name + "\t" + branch + "\t\t" + ph);

 }

}

class Lab1A

{

 public static void main(String args[]) throws Exception

 {

 String u, n, b;

 long p;

 int no;

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 System.out.println("Enter number of records");

 no = Integer.parseInt(br.readLine());

 Student[] s = new Student[no];

 for(int i=0; i<s.length;i++)

 {

 [10]

CO3 L4

 System.out.println("Enter " + (i + 1) + " Student record");

 s[i] = new Student();

 System.out.println("Enter student USN");

 u = br.readLine();

 System.out.println("Enter student Name");

 n = br.readLine();

 System.out.println("Enter student Branch");

 b = br.readLine();

 System.out.println("Enter student Phone number");

 p = Long.parseLong(br.readLine());

 s[i].read_data(u, n, b, p);

 }

 System.out.println("USN \t\t NAME \t BRANCH \t PHONE NO");

 for(int i=0; i<s.length;i++)

 {

 s[i].display();

 }

 }

}

7. (a) What is inheritance? Explain inheritance with the help of a Java program.

Inheritance is one of the building blocks of object oriented programming languages.

It allows creation of classes with hierarchical relationship among them. Using

inheritance, one can create a general class that defines traits common to a set of

related items. This class can then be inherited by other, more specific classes, each

adding those things that are unique to it. In the terminology of Java, a class that is

inherited is called a superclass. The class that does the inheriting is called a

subclass.

class A

{

int i, j;

void showij()

{

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A
{

int k;

void showk()

{

System.out.println("k: " + k);

}

void sum()

{

System.out.println("i+j+k: " + (i+j+k));

}

}

class SimpleInheritance

 [06]

CO3 L2

{

public static void main(String args[])

{

A superOb = new A();

B subOb = new B();

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

 (b) What is abstract class? Explain abstract class with the help of a Java program
A class containing at least one abstract method is called as abstract class. Abstract

classes cannot be instantiated, that is one cannot create an object of abstract class.

Whereas, a reference can be created for an abstract class.

abstract class A

{

abstract void callme();

void callmetoo()

{

System.out.println("This is a concrete method.");

}

}

class B extends A

{

void callme() //overriding abstract method

{

System.out.println("B's implementation of callme.");

}

}

class AbstractDemo

{

public static void main(String args[])

{

B b = new B(); //subclass object

b.callme(); //calling abstract method

b.callmetoo(); //calling concrete method

}

}

 [04]

CO3 L4

8. Design a Java class called Stack with the following instance variables

(i) private int stck[] (ii) private int tos

and methods

(i) void push(int)

(ii) int pop()

Write a Java program to create 1 Stack object with stack size 5. Call the

method push() to push 5 elements on to stack and display the output of the

pop() operation.

class Stack

{

int st[] = new int[5];

int top;

Stack()

{

top = -1;

}

void push(int item)

{

if(top==4)

System.out.println("Stack is full.");

else

st[++top] = item;

}

int pop()

{

if(top==-1)

{

System.out.println("Stack underflow.");

return 0;

}

else

return st[top--];

}

}

class StackDemo

{

public static void main(String args[])

{

Stack mystack1 = new Stack();

Stack mystack2 = new Stack();

for(int i=0; i<5; i++)

mystack1.push(i);

for(int i=5; i<10; i++)

mystack2.push(i);

System.out.println("Contents of mystack1:");

for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Contents of mystack2:");

for(int i=0; i<5; i++)

 [10]

CO3 L3

System.out.println(mystack2.pop());

}

}

