

Sub: Database Management Systems
Sub Code:

17CS53

Date: 14/10/19 Duration: 90 mins Max Marks: 50
Sem /Sec:

V A,B,C OBE

 Answer any FIVE FULL QUESTIONS
CO RBT

1 Draw an ER diagram for BANK database schema with at least

five entities also specify primary key and structural

constraints(Relationship and participation constraint).

Answer: Diagram

CO1

L3

2

A

Explain the informal design guidelines used as measures to

determine the quality of relation schema design.

Answer:

Four informal guidelines that may be used as measures to determine the quality of relation

schema design:

a.Making sure that the semantics of the attributes is clear in the schema

b.Reducing the redundant information in tuples

c. Reducing the NULL values in tuples

d.Disallowing the possibility of generating spurious tuples.

(a)Imparting Clear Semantics to Attributes in Relations

The semantics of a relation refers to its meaning resulting from the interpretation of attribute

values in a tuple.While designing a schema, assign simple but meaningful name for the schema

and attributes so that schema can be easily explained.Semantics of attributes should be easy to

interpret.Name should convey maximum meaning as possible.

Guideline 1.Design a relation schema so that it is easy to explain its meaning. Do not combine

attributes from multiple entity types and relationship types into a single relation. Intuitively, if a

relation schema corresponds to one entity type or one relationship type, it is straightforward to

explain its meaning.

(b)Redundant Information in Tuples and Update Anomalies

When information is stored redundantly,

 -Wastes storage space

-Causes problems with update anomalies(insertion ,deletion and updation anomalies

In EMP_DEPT, the attribute values pertaining to a particular department (Dnumber, Dname,

Dmgr_ssn) are repeated for every employee who works for that department. Storing natural

joins of base relations leads to an additional problem referred to as update anomalies. These can

be classified into insertion anomalies, deletion anomalies, and modification anomalies.

Insertion Anomalies. Insertion anomalies can be differentiated into two types,

a.To insert a new employee tuple into EMP_DEPT, we must include either the attribute values

for the department that the employee works for, or NULLs (if the employee does not work for a

department as yet). For example, to insert a new tuple for an employee who works in

department number 5, we must enter all the attribute values of department 5 correctly so that

they are consistent with the corresponding values for department 5 in other tuples in

EMP_DEPT

b. It is difficult to insert a new department that has no employees as yet in the EMP_DEPT

relation. The only way to do this is to place NULL values in the attributes for employee. This

violates the entity integrity for EMP_DEPT because its primary key Ssn cannot be null.

Deletion Anomalies

If we delete from EMP_DEPT an employee tuple that happens to represent the last employee

working for a particular department, the information concerning that department is lost

inadvertently from the database.

Modification Anomalies

In EMP_DEPT, if we change the value of one of the attributes of a particular department—say,

the manager of department 5—we must update the tuples of all employees who work in that

department.

Guideline 2. Design the base relation schemas so that no insertion, deletion, or modification

anomalies are present in the relations. If any anomalies are present,4 note them clearly and

make sure that the programs that update the database will operate correctly.

(c)NULL Values in Tuples

If many of the attributes do not apply to all tuples in the relation, we end upwith many NULLs

in those tuples.NULLs can have multiple interpretations,such as the following:

CO4

L2

2

b

■ The attribute does not apply to this tuple.

■ The attribute value for this tuple is unknown.

■ The value is known but absent; that is, it has not been recorded yet.

Guideline 3. As far as possible, avoid placing attributes in a base relation whose values may

frequently be NULL. If NULLs are unavoidable, make sure that they apply in exceptional cases

only and do not apply to a majority of tuples in the relation.

(d)Generation of Spurious Tuples

Guideline 4. Design relation schemas so that they can be joined with equality conditions on

attributes that are appropriately related (primary key, foreign key) pairs in a way that guarantees

that no spurious tuples are generated. Avoid relations that contain matching attributes that are

not (foreign key, primary key) combinations because joining on such attributes may produce

spurious tuples.

Explain how Group by clause works. What is the difference

between “where” and “having”?
The GROUP BY Statement in SQL is used to arrange identical data into groups with the help of

some functions. i.e if a particular column has same values in different rows then it will arrange

these rows in a group.

 GROUP BY clause is used with the SELECT statement.

 In the query, GROUP BY clause is placed after the WHERE clause.

 In the query, GROUP BY clause is placed before ORDER BY clause if used any.

Syntax:

SELECT column1, function_name(column2)

FROM table_name

WHERE condition

GROUP BY column1, column2

ORDER BY column1, column2;

Employee

CO3

L2

Student

Example:

 Group By single column: Group By single column means, to place all the rows with

same value of only that particular column in one group. Consider the query as shown

below:

 SELECT NAME, SUM(SALARY) FROM Employee

 GROUP BY NAME;

The above query will produce the below output:

As you can see in the above output, the rows with duplicate NAMEs are grouped under

same NAME and their corresponding SALARY is the sum of the SALARY of duplicate

rows. The SUM() function of SQL is used here to calculate the sum.

 Group By multiple columns: Group by multiple column is say for example, GROUP

BY column1, column2. This means to place all the rows with same values of both the

columns column1 and column2 in one group. Consider the below query:

 SELECT SUBJECT, YEAR, Count(*)

 FROM Student

 GROUP BY SUBJECT, YEAR;

Output:

 As you can see in the above output the students with both same SUBJECT and YEAR

are placed in same group. And those whose only SUBJECT is same but not YEAR

belongs to different groups. So here we have grouped the table according to two columns

or more than one column.

HAVING Clause
We know that WHERE clause is used to place conditions on columns but what if we want to

place conditions on groups?

This is where HAVING clause comes into use. We can use HAVING clause to place conditions

to decide which group will be the part of final result-set. Also we can not use the aggregate

functions like SUM(), COUNT() etc. with WHERE clause. So we have to use HAVING clause

3

a

if we want to use any of these functions in the conditions.

Syntax:

SELECT column1, function_name(column2)

FROM table_name

WHERE condition

GROUP BY column1, column2

HAVING condition

ORDER BY column1, column2;

function_name: Name of the function used for example, SUM() , AVG().

table_name: Name of the table.

condition: Condition used.

Example:

SELECT NAME, SUM(SALARY) FROM Employee

GROUP BY NAME

HAVING SUM(SALARY)>3000;

Output:

As you can see in the above output only one group out of the three groups appears in the result-

set as it is the only group where sum of SALARY is greater than 3000. So we have used

HAVING clause here to place this condition as the condition is required to be placed on groups

not columns.

Discuss how each of the following constructs used in SQL -

(i)views and their updatability
In SQL, a view is a virtual table based on the result-set of an SQL statement. A view contains

rows and columns, just like a real table. The fields in a view are fields from one or more real

tables in the database.

SQL CREATE VIEW Statement

In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are fields from

one or more real tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if

the data were coming from one single table.

CREATE VIEW Syntax

CREATE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

SQL CREATE VIEW Examples

The following SQL creates a view that shows all customers from Brazil:

CO3

L2

3

b

Example

CREATE VIEW [Brazil Customers] AS

SELECT CustomerName, ContactName

FROM Customers

WHERE Country = "Brazil";

We can query the view above as follows:

Example

SELECT * FROM [Brazil Customers];

Try it Yourself »

Update View

The SQL UPDATE VIEW command can be used to modify the data of a view.

All views are not updatable. So, UPDATE command is not applicable to all views. An

updatable view is one which allows performing a UPDATE command on itself without

affecting any other table.

A view can be updated with the CREATE OR REPLACE VIEW command.

SQL CREATE OR REPLACE VIEW Syntax

CREATE OR REPLACE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

The following SQL adds the "City" column to the "Brazil Customers" view:

Example

CREATE OR REPLACE VIEW [Brazil Customers] AS

SELECT CustomerName, ContactName, City

FROM Customers

WHERE Country = "Brazil";

Discuss how each of the following constructs used in SQL -

(ii) Triggers

Answer:

Triggers are stored procedures for the actions to be performed on certain condition. It is defined

in such a way that it will run automatically, before or after some events such as

INSERT,UPDATE OR DELETE.

Syntax:

Create trigger <trigger_name>

[before/after]

{insert/update/delete}

On [table_name]

[for each row]

[trigger-body]

Example:

CREATE TRIGGER SALARY_VIOLATION

BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN

ON EMPLOYEE

CO3

L2

https://www.w3schools.com/sql/trysql.asp?filename=trysql_view2

4

a

FOR EACH ROW

WHEN (NEW.SALARY> (SELECT SALARY FROM EMPLOYEE

WHERE SSN = NEW.SUPERVISOR_SSN))

INFORM_SUPERVISOR(NEW.Supervisor_ssn,

NEW.Ssn);

A typical trigger which is regarded as an ECA (Event,Condition, Action) rule has three

components:

1. The event(s): These are usually database update operations that are explicitly applied to the

database. In this example the events are: inserting a new employee record, changing an

employee’s salary, or changing an employee’s supervisor . These events are specified after the

keyword BEFORE in this example, which means that the triggers should be executed before the

triggering operation is executed. An alternative is to use the keyword AFTER, which specifies

that the trigger should be executed after the operation specified in the event is completed.

2. The condition that determines whether the rule action should be executed: Once the

triggering event has occurred, an optional condition may be evaluated.Ifno condition is

specified, the action will be executed once the event occurs. If a condition is specified, it is first

evaluated, and only if it evaluatesto true will the rule action be executed. The condition is

specified in the WHEN clause of the trigger.

3. The action to be taken: The action is usually a sequence of SQL statements, but it could also

be a database transaction or an external program that will be automatically executed.

Triggers can be used in various applications, such as maintaining database consistency,

monitoring database updates, and updating derived data automatically.

Draw and explain 3 tier-architecture

A 3-tier architecture is a type of software architecture which is composed of three “tiers” or

“layers” of logical computing. They are often used in applications as a specific type of client-

server system. 3-tier architectures provide many benefits for production and development

environments by modularizing the user interface, business logic, and data storage layers. Doing

so gives greater flexibility to development teams by allowing them to update a specific part of

an application independently of the other parts. This added flexibility can improve overall time-

to-market and decrease development cycle times by giving development teams the ability to

replace or upgrade independent tiers without affecting the other parts of the system.

What Do the 3 Tiers Mean?

 Presentation Tier- The presentation tier is the front end layer in the 3-tier system and

consists of the user interface. This user interface is often a graphical one accessible through

a web browser or web-based application and which displays content and information useful

to an end user. This tier is often built on web technologies such as HTML5, JavaScript,

CSS, or through other popular web development frameworks, and communicates with

others layers through API calls.

 Application Tier- The application tier contains the functional business logic which drives

an application’s core capabilities. It’s often written in Java, .NET, C#, Python, C++, etc.

 Data Tier- The data tier comprises of the database/data storage system and data access

layer. Examples of such systems are MySQL, Oracle, PostgreSQL, Microsoft SQL Server,

MongoDB, etc. Data is accessed by the application layer via API calls.

CO3

L2

4

b

Explain 1NF,2NF.

Answer:

First Normal Form

First normal form (1NF)is now considered to be part of the formal definition of a relation in the

basic (flat) relational model. it was defined to disallow multivalued attributes, composite

attributes, and their combinations. It states that the domain of an attribute must include only

atomic (simple, indivisible) values and that the value of any attribute in a tuple must be a single

value from the domain of that attribute. 1NF disallows relations within relations or relations as

attribute values within tuples. The only attribute values permitted by 1NF are single atomic (or

indivisible) values.

There are three main techniques to achieve first normal form for such a relation:

1. Remove the attribute Dlocations that violates 1NF and place it in a separate relation

DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT. The primary

key of this newly formed relation is the combination {Dnumber, Dlocation}, as shown in

Figure 14.2. A distinct tuple in DEPT_LOCATIONS exists for each location of a department.

This decomposes the non-1NF relation into two 1NF relations.

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT relation

for each location of a DEPARTMENT, as shown in Figure .In this case, the primary key

becomes the combination {Dnumber, Dlocation}. This solution has the disadvantage of

introducing redundancy in the relation and hence is rarely adopted.

3. If a maximum number of values is known for the attribute—for example, if it is known that at

most three locations can exist for a department—replace the Dlocations attribute by three

CO4

L2

atomic attributes: Dlocation1, Dlocation2, and Dlocation3. This solution has the disadvantage

of introducing NULL values if most departments have fewer than three locations.

The schema of this EMP_PROJ relation can be represented as follows: EMP_PROJ(Ssn,

Ename, {PROJS(Pnumber, Hours)})

The existence of more than one multivalued attribute in one relation must be handled carefully.

As an example, consider the following non-1NF relation:

PERSON (Ss#, {Car_lic#}, {Phone#})

The right way to deal with the two multivalued attributes in PERSON is to decompose it into

two separate relations.

P1(Ss#, Car_lic#) and P2(Ss#, Phone#).

2NF (Second Normal Form)

Second normal form (2NF) is based on the concept of full functional dependency. A functional

dependency X → Y is a full functional dependency if removal of anyattribute A from X means

that the dependency does not hold anymore.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully

functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side attributes

are part of the primary key. If the primary key contains a single attribute, the test need not be

applied at all. If a relation schema is not in 2NF, it can be second normalized or 2NF

normalized into a number of 2NF relations in which nonprime attributes are associated only

with the part of the primary key on which they are fully functionally dependent.

5

a

5

b

6

a

Write relational algebra expressions for the following problems:

Ans-5(a) Relational Algebra Queries:

(i)Find the names of employees who work on all projects controlled by department no.4

DEPT5 PROJS(PNO) ← πP NUMBER(σDNUM=4(PROJECT))

EMP PROJ(SSN, PNO) ← πESSN,P NO(WORKS ON)

 RESULT EMP SSNS ← EMP PROJ ÷ DEPT PROJS

RESULT ←πLNAME,F NAME(RESULT EMP SSNS ∗ EMPLOY EE)

(ii) Retrieve the name and address of all employees who work for the ‘Research’ department

RESEARCH DEPT ← σDNAME=’Research’(DEPARTMENT)

RESEARCH EMPS ← (RESEARCH_ DEPT ⋈DNUMBER=DNO (EMPLOY EE))
 RESULT ←πF NAME,LNAME,ADDRESS(RESEARCH_EMPS)

(iii) List the name of all managers with at least one dependent.

MGRS(SSN) ← πMGRSSN (DEPARTMENT)

EMPS _WITH _DEPS(SSN) ←πESSN (DEPENDENT)

MGRS_WITH _DEPS ← (MGRS ∩ EMPS_WITH_DEPS)

RESULT ← πLNAME,F NAME(MGRS_WITH _DEPS ∗ EMPLOYEE)

Write SQL queries for the following problems:

5(b) SQL queries:
(i) List the name of all employees who have two or more dependents.

SELECT LNAME, FNAME

FROM EMPLOYEE
 WHERE (SELECT COUNT (*) FROM DEPENDENT WHERE SSN = ESSN) >= 2;

(ii) Retrieve the names of employees who have no dependents(USE EXISTS)
SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE NOT EXISTS (SELECT * FROM DEPENDENT WHERE SSN = ESSN);

(iii) Print details of department that has less than 5 people working in it
Select D.*,count(E.ssn)
From DEPARTMENT D,EMPLOYEE E
 where E.dno=D.dnumber
 Group by D.dnumber
 Having count(E.ssn)<5;

Explain functional dependency with example and demonstrate its

representation.

A functional dependency is a constraint between two sets of attributes from the

Database.

Definition. A functional dependency, denoted by X → Y, between two sets of attributes X and

Y that are subsets of R specifies a constraint on the possible tuples that can form a relation state

r of R. The constraint is that, for any two tuples t1 and t2 in r that have t1[X] = t2[X], they must

also have t1[Y] = t2[Y].

The values of the Y component of a tuple in r depend on, or are determined by, the values of the

X component; alternatively, the values of the X componentof a tuple uniquely (or functionally)

determine the values of the Y component. The abbreviation for functional dependency is FD or

CO2

CO3

CO4

L3

L3

L2

6

b

f.d.The set ofattributes X is called the left-hand side of the FD, and Y is called the right-hand

side. A functional dependency is a property of the semantics or meaning of the attributes.

Diagrammatic notation for displaying FDs: Each FD is displayed as a horizontal line. The left-

hand-side attributes of the FD are connected by vertical lines to the line representing the FD,

whereas the right-hand-side attributes are connected by the lines with arrows pointing toward

the attributes.

What are the different kinds of join operations in relational

algebra? Explain each with example
Join Operations

Join operation is essentially a cartesian product followed by a selection criterion.

Join operation denoted by ⋈.

JOIN operation also allows joining variously related tuples from different relations.

Types of JOIN:

Various forms of join operation are:

Inner Joins:

 Theta join

 EQUI join

 Natural join

Outer join:

 Left Outer Join

 Right Outer Join

 Full Outer Join

Inner Join:

In an inner join, only those tuples that satisfy the matching criteria are included, while the rest

are excluded. Let's study various types of Inner Joins:

Theta Join:

CO2

L1

The general case of JOIN operation is called a Theta join. It is denoted by symbol θ

Example

A ⋈θ B

Theta join can use any conditions in the selection criteria.

For example:

A ⋈ A.column 2 > B.column 2 (B)

A ⋈ A.column 2 > B.column 2 (B)

column 1 column 2

1 2

EQUI join:

When a theta join uses only equivalence condition, it becomes a equi join.

For example:

A ⋈ A.column 2 = B.column 2 (B)

A ⋈ A.column 2 = B.column 2 (B)

column 1 column 2

1 1

EQUI join is the most difficult operations to implement efficiently in an RDBMS and one

reason why RDBMS have essential performance problems.

NATURAL JOIN (⋈)

Natural join can only be performed if there is a common attribute (column) between the

relations. The name and type of the attribute must be same.

Example

Consider the following two tables

C

Num Square

2 4

3 9

D

Num Cube

2 8

3 18

C ⋈ D

C ⋈ D

Num Square Cube

2 4 4

3 9 9

OUTER JOIN

In an outer join, along with tuples that satisfy the matching criteria, we also include some or all

tuples that do not match the criteria.

Left Outer Join(A B)

In the left outer join, operation allows keeping all tuple in the left relation. However, if there is

no matching tuple is found in right relation, then the attributes of right relation in the join result

are filled with null values.

Consider the following 2 Tables

https://www.guru99.com/images/1/100518_0535_RelationalA5.png
https://www.guru99.com/images/1/100518_0535_RelationalA6.png

A

Num Square

2 4

3 9

4 16

B

Num Cube

2 8

3 18

5 75

A B

A ⋈ B

Num Square Cube

2 4 4

3 9 9

4 16 -

Right Outer Join: (A B)

In the right outer join, operation allows keeping all tuple in the right relation. However, if there

is no matching tuple is found in the left relation, then the attributes of the left relation in the join

result are filled with null values.

https://www.guru99.com/images/1/100518_0535_RelationalA5.png
https://www.guru99.com/images/1/100518_0535_RelationalA7.png

A B

A ⋈ B

Num Cube Square

2 8 4

3 18 9

5 75 -

Full Outer Join: (A B)

In a full outer join, all tuples from both relations are included in the result, irrespective of the

matching condition.

A B

A ⋈ B

Num Cube Square

2 4 8

3 9 18

4 16 -

5 - 75

https://www.guru99.com/images/1/100518_0535_RelationalA8.png
https://www.guru99.com/images/1/100518_0535_RelationalA7.png
https://www.guru99.com/images/1/100518_0535_RelationalA9.png
https://www.guru99.com/images/1/100518_0535_RelationalA9.png

