

Internal Assessment Test II – October 2019

Solutions

1(a)State and prove pumping lemma for regular languages. Prove that the given language is not regular- {w $\in \{0,1\}^* :#_0(w) \neq^* H_1(w)$

Pumping Lemma (for Regular Languages) : If A is a Regular Language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into 3 pieces, $s =$ xyz, satisfying the following conditions:

a. For each $i \ge 0$, xy ⁱz \in A, b. $|y| > 0$, and c. $|xy| \le p$

Proof :Let $M = (Q, \Sigma, \delta, q, F)$ be a DFA recognizing A and p be the number of states of M. Let $s = s_1 s_2 ... s_n$ be a string in A with length n, where $n \ge p$. Let r_1 ,..., r_{n+1} be the sequence of states M enters when processing s. $r_{i+1} = \delta(r_i, s_i)$ for $1 \le i \le n$. The sequence has length n+1, which is at least p + 1. Among the first $p + 1$ elements in the sequence, two must be the same state, via the pigeonhole principle. The first is called r_i , and the second is r_l

Because r_1 occurs among the first $p + 1$ places in a sequence starting at r_1 , we have $1 \le p + 1$. Now let $x = s_1$...s_{j-1}, $y = s_j$...s₁₋₁, and $z = s_l$...s_n. As x takes M from r_1 to r_j , y takes M from r_l to r_l , and z takes M from r_l to r_{n+1} , which is an accept state, M must accept xy^iz for $i \ge 0$. We know $j \ne 1$, so $|y| > 0$; and $1 \le p + 1$, so $|xy|$ \leq p. Thus, we have satisfied all conditions of the pumping lemma.

Not regular. This one is quite hard to prove by pumping. Since so many strings are in *L*, it's hard to show how to pump and get a string that is guaranteed not to be in *L*. Generally, with problems like this, you want to turn them into problems involving more restrictive languages to which it is easier to apply pumping. So: if *L* were regular, then the complement of *L*, *L*′ would also be regular.

 $L' = \{w \in \{0, 1\}^* : #0(w) = #1(w)\}.$

It is easy to show, using pumping, that *L'* is not regular: Let $w = 0k1k$. *y* must occur in the initial string of 0's, since $|xy| \le k$. So $y = 0i$ for some $i \ge 1$. Let q of the pumping theorem equal 2 (i.e., we will pump in one extra copy of *y*). We now have a string that has more 0's than 1's and is thus not in *L*′. Thus *L*′ is not regular. So neither is *L*. Another way to prove that *L'* isn't regular is to observe that, if it were, $L'' = L' \cap 0^*1^*$ would also have to be regular. But L'' is 0^n1^n , which we already know is not regular.

2 a) Let $L = \{w \in \{a, b\}^* :$ every a in *w* is immediately followed by at least one b.

i) Write a regular expression that describes *L*.

(ab ∪ b)*

ii) Write a regular grammar that generates *L*.

 $S \rightarrow bS$

$$
S \to aT
$$

$$
S \to \varepsilon
$$

$$
T \to bS
$$

iii) Construct an FSM that accepts *L*.

b) Explain with example Inherently ambiguous grammar.

In many cases, for an ambiguous grammar G, it is possible to construct a new grammar G' that generates L(G) and that has less (or no) ambiguity. Unfortunately, it is not always possible to do this. There exist context-free languages for which no unambiguous grammar exists. We call such languages inherently ambiguous.

Let $L = \{a^i b^j c^k : i, j, k \ge 0, i = j \text{ or } j = k\}$. An alternative way to describe it is $\{a^n b^n c^m : n, m \ge 0\} \cup \{a^n b^m c^m : n, m \ge 0\}$ ≥ 0 . Every string in L has either (or both) the same number of a's and b's or the same number of b's and c's. L is inherently ambiguous. One grammar that describes it is $G = (\{S, S_1, S_2, A, B, a, b, c\}, \{a, b, c\}, R, S)$, where:

> $R = \{ S \rightarrow S_1 | S_2$ $S_1 \rightarrow S_1 \subset |A|$ /* Generate all strings in $\{a^n b^n c^m : n, m \ge 0\}$. $A \rightarrow aAb \mid \varepsilon$ /* Generate all strings in $\{a^n b^m c^m : n, m \ge 0\}$. $S_2 \rightarrow aS_2|B$ $B \rightarrow bBc \mid \varepsilon$ }.

Now consider the strings in $A^nB^nC^n = \{a^n b^n c^n : n \ge 0\}$. They have two distinct derivations, one through S_1 and the other through S_2 . It is possible to prove that L is inherently ambiguous: given any grammar G that generates L there is at least one string with two derivations in G .

3(a) Consider the following grammar S->ABC|BaB A->aA|BaC|aaa B->bBb|a|D C->CA|AC $D \rightarrow \epsilon$ Eliminate ε rules Eliminate any unit rules from the resulting grammar. Eliminate any useless symbols from the resulting grammar

 10^{3} $S = ABC$ BaB $A \rightarrow aA \mid BaC|a\circ a$ $B \ge bB|_{L|a|D}$ $C \ni CA|AC$ $D \rightarrow 8$ 1) Eliminale & rules Nullable Set = { D, B} After elimination of D S > ABC BaB AC aB Ba (ince B is rullable) $A \ge \alpha A \mid$ Bal \mid aaa $B \rightarrow bB|b|a$ $C \geq C A | AC$. There are not unit rules. éliminate espelus symbols \mathcal{D} Genuating entre A Dada $3 \Rightarrow BaB|aB|Ba$ (first B is generating A> a A) and I since A is generating. B > b Bl since B is generation. C is non generating (climinate et)

Redable	$S \Rightarrow$ $BaB aB Bq$
$B \rightarrow bB$ b a	
A is not suchable of a in order	
Find $g\circ mma$	
$S \Rightarrow BaB aB Ba$	
$B \Rightarrow bB b a$	
$B \Rightarrow bB b a$	
$B \Rightarrow bB b$	
$A \Rightarrow aB b$	
$B \Rightarrow bB b$	
$3 \Rightarrow aABA BBA AB BB $	
$3 \Rightarrow aABA BBA AB B B B B AB BA BA AAB A AB BA AA B $	
$A \Rightarrow aA B$	
$B \Rightarrow bB b $	
$B \Rightarrow bB b $	
$B \Rightarrow bB b $	

4) (a) Design a context free grammar for the following : i. $L = \{0^m 1^m 2^n | m \ge 1, n \ge 1\}$

- ii. $L = \{a^i b^j \mid i \neq j, i \geq 0, j \geq 0\}$
- (b) What is ambiguity? Show that the following grammar is ambiguous Sometimes a grammar may produce more than one parse tree for some (or all) of the strings it generates. When this happens we say that the grammar is ambiguous. More precisely, a grammar *G* is *ambiguous* iff there is at least one string in $L(G)$ for which *G* produces more than one parse tree

S->aB|bA A->aS|bAA|a B->bS|aBB|b aaabbabba → aaabbabbA (rule 2a) aaabbabb $A \rightarrow$ aabbab S (rule 1b) aabbab $S \rightarrow$ aabba B (rule 3b)

aabba $B \rightarrow$ aabbS (rule 1a) aabbS \rightarrow aabB (rule 3b) aabB → aaBB (rule 3a) a aBB \rightarrow aB (rule 3c) $aB \rightarrow S$ (rule 1a) 5) Let G be the grammar S->aB|bA A->a|aS|bAA B->b|bS|aBB For the string aaabbabbba find a i) Leftmost derivation S→ a**B** \rightarrow aa**B**B (Using B \rightarrow aBB) \rightarrow aaa**B**BB (Using B \rightarrow aBB) \rightarrow aaab**B**B (Using B \rightarrow b) \rightarrow aaabb**B** (Using B \rightarrow b) \rightarrow aaabba**B**B (Using B \rightarrow aBB) \rightarrow aaabbab**B** (Using $B \rightarrow b$) \rightarrow aaabbabb**S** (Using $B \rightarrow bS$) \rightarrow aaabbabbb**A** (Using S \rightarrow bA) \rightarrow aaabbabbba (Using A \rightarrow a) ii) Rightmost derivation $S \rightarrow aB$ \rightarrow aaB**B** (Using B \rightarrow aBB) \rightarrow aaBaB**B** (Using B \rightarrow aBB) \rightarrow aaBaBb**S** (Using B \rightarrow bS) \rightarrow aaBaBbb**A** (Using S \rightarrow bA) \rightarrow aaBa**B**bba (Using A \rightarrow a) \rightarrow aa**B**abbba (Using B \rightarrow b) \rightarrow aaaB**B**abbba (Using B \rightarrow aBB) \rightarrow aaa**B**babbba (Using B \rightarrow b) \rightarrow aaabbabbba (Using B \rightarrow b) iii) Parse tree \mathbf{s} в B B B B a B a в $\overline{}$ $\overline{}$ $\overline{}$ $\mathbf b$ b $\mathbf b$

Leftmost Derivation Tree

a

b) Eliminate recursion from the given grammar

 $A \rightarrow B x y | x$ $B \rightarrow CD$ $C \rightarrow A \mid c$ $D \rightarrow d$

Indiant Recursion Recurrent letter $\int A \Rightarrow ADxy |cDxy |x.$ $A \rightarrow Bxy/x$ $B \geq C D$ $C \rightarrow A|c$ $D \rightarrow d$ Final garamanar There is no direct recursion Replace B > CD $in A \rightarrow Bry(x)$. $\frac{m}{eD\pi y\lambda'}\int\frac{R}{2A}$ $A \geq CDxy|z$ $B > CDxy/x$ (7) A | c $D \rightarrow d$ Replace C g Alc $CDxy/x$ in d. $A7ADxy|x|cDxy$ ather enly are having recuzion \sim $A \rightarrow ADxy |cDxy |x$ $B \geq CD$ $C \rightarrow A|c$ $D \rightarrow d$

6 a) Define Chomsky Normal form. Obtain the following grammar in CNF.

S->ASB|ε A->aAS|a B->SbS|A|bb

 $S \Rightarrow ASB$ ϵ $A \geq aA S | a$ B $>$ $SbS|A|bb$ (i) Nullable raisables $S = \{S\}$ Elimination epilon Rule $S \rightarrow ASB$ AB $A \rightarrow aAS |aA|a$ $B \geq SbS|A|bb|Sb|bS.$ Elimination of Mind take Elimination of unit rules 37.158148 $S \rightarrow ASB/AB$ $A \rightarrow T_{a}AS/T_{a}A/a$ $A \ni aAS \mid aA \mid a$ $B>5T_{0}S$ $T_{A}AS$ $T_{0}A[A]$ A 3 a ASJan₁ 7676 ST6 T6 $Ta \rightarrow \alpha$ T_b 7^b

$$
571M, 14B\nA7 TaM2 |TaA|a\nA7 TaM2 |TaA|a\nB7 SM3 |TaM2 |TaA|a |TbTb|STb|TbS.\nH1 = SB\nH1 = 3AS\nH2 = TbS\nTa = 3A\nTb = b
$$

b) Show a regular grammar for the given language :{ $w \in \{a, b\}^*$: *w* does not end in aa}.

 $S \rightarrow aA \mid bB \mid ε$ A → aC | bB | ε B → a*A* | b*B* | ε $C \rightarrow aC \mid bB$