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1 (a) State and prove pumping lemma for regular languages. Prove that the given 

language is not regular- {w ∈ {0,1}* :#0(w)≠#1(w)} 

[10] L3 CO3 

2 (a) Let L = {w ∈ {a, b}*: every a in w is immediately followed by at least one b. 

i) Write a regular expression that describes L.  

ii) Write a regular grammar that generates L.  

iii) Construct an FSM that accepts L. 

[6] L2 CO3 

   (b)  Explain with example Inherently ambiguous grammar. [4] L1 CO3 

3(a)  Consider the following grammar  

S->ABC|BaB 

A->aA|BaC|aaa 

B->bBb|a|D 

C->CA|AC 

D ->ε 

i) Eliminate ε rules  

ii) Eliminate any unit rules from the resulting grammar.           

iii) Eliminate any useless symbols from the resulting grammar 

[6]  L2 CO3 

  (b) Obtain the following grammar in GNF 

            S -> ABA | AB | BA | AA | A | B 

A -> aA | b 

B -> bB | b 

[4] L2 CO3 

4) (a)  Design a context free grammar for the following : 

i. L={0m1m2n|m≥1, n≥1} 

ii. L={aibj | i≠j, i≥0,j≥0} 

[6] L3 CO3 

   (b) What is ambiguity? Show that the following grammar is ambiguous 

S->aB|bA 

A->aS|bAA|a 

B->bS|aBB|b 

[4] L2 CO3 

5  (a) Let G be the grammar 

S->aB|bA 

A->a|aS|bAA 

B->b|bS|aBB 

For the string aaabbabbba find a   

i) Leftmost derivation  

ii) Rightmost derivation  

ii) Parse tree 

 

[6] L2 CO3 



 

(b) Eliminate recursion  from the given grammar  

A --> B x y | x 

B --> C D 

C --> A | c 

D --> d 

[4] L3 CO3 

6 (a) Define Chomsky Normal form. Obtain the following grammar in CNF.  

S->ASB|ε 

A->aAS|a 

B->SbS|A|bb 

[8] L3 CO3 

   (b)  Show a regular grammar for the given language :{ w ∈ {a, b}*: w does not end in 

aa}. 

 

[2] L3 CO3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Solutions  

1(a)State and prove pumping lemma for regular languages. Prove that the given language is not regular- {w 

∈ {0,1}* :#0(w)≠#1(w)} 

 

Pumping Lemma (for Regular Languages) : If A is a Regular Language, then there is a number p (the 

pumping length) where if s is any string in A of length at least p, then s may be divided into 3 pieces, s = 

xyz, satisfying the following conditions: 

 a. For each i ≥ 0, xy iz ∈ A,  

b. |y| > 0, and  

c. |xy| ≤ p 

 

Proof :Let M = (Q, Σ, δ, q , F) be a DFA recognizing A and p be the number of states of M. Let s = s1 s2 ...sn 

be a string in A with length n, where n ≥ p. Let r1 ,...,rn + 1 be the sequence of states M enters when 

processing s. ri + 1 = δ(ri , si ) for 1 ≤ i ≤ n. The sequence has length n+1, which is at least p + 1. Among the 

first p + 1 elements in the sequence, two must be the same state, via the pigeonhole principle. The first is 

called rj , and the second is rl 

 
 

Because rl occurs among the first p + 1 places in a sequence starting at r1 , we have l ≤ p + 1. Now let x = s1 

...s j-1, y = s j ...s l-1, and z = sl ...sn . As x takes M from r1 to rj , y takes M from rj to rl , and z takes M from rl 

to rn+1, which is an accept state, M must accept xyiz for i ≥ 0. We know j ≠ l, so |y| > 0; and l ≤ p + 1, so |xy| 

≤ p. Thus, we have satisfied all conditions of the pumping lemma. 

 

Not regular. This one is quite hard to prove by pumping. Since so many strings are in L, it’s hard to show 

how to pump and get a string that is guaranteed not to be in L. Generally, with problems like this, you want 

to turn them into problems involving more restrictive languages to which it is easier to apply pumping. So: if 

L were regular, then the complement of L, L′ would also be regular.  

L′ = {w ∈ {0, 1}* : #0(w) = #1(w)}.  

It is easy to show, using pumping, that L′ is not regular: Let w = 0k1k. y must occur in the initial string of 

0’s, since |xy| ≤ k. So y = 0i for some i ≥ 1. Let q of the pumping theorem equal 2 (i.e., we will pump in one 

extra copy of y). We now have a string that has more 0’s than 1’s and is thus not in L′. Thus L′ is not regular. 

So neither is L. Another way to prove that L′ isn’t regular is to observe that, if it were, L′′ = L′ ∩ 0*1* would 

also have to be regular. But L′′ is 0n1n, which we already know is not regular. 

 

2 a) Let L = {w ∈ {a, b}*: every a in w is immediately followed by at least one b. 

i) Write a regular expression that describes L.  

(ab ∪ b)* 

 

ii) Write a regular grammar that generates L.  

S → bS  



 

S → aT  

S → ε  

T → bS 

 

iii) Construct an FSM that accepts L. 

 
 

 

b) Explain with example Inherently ambiguous grammar. 

 

In many cases, for an ambiguous grammar G, it is possible to construct a new grammar G that generates 

L(G) and that has less (or no) ambiguity. Unfortunately, it is not always possible to do this. There exist 

context-free languages for which no unambiguous grammar exists. We call such languages inherently 

ambiguous. 

 

 
 

3(a)  Consider the following grammar  

S->ABC|BaB 

A->aA|BaC|aaa 

B->bBb|a|D 

C->CA|AC 

D ->ε 

Eliminate ε rules  

Eliminate any unit rules from the resulting grammar.           

Eliminate any useless symbols from the resulting grammar 

 



 

 

  



 

 
 

 

4) (a)  Design a context free grammar for the following : 

i. L={0m1m2n|m≥1, n≥1} 

ii. L={aibj | i≠j, i≥0,j≥0} 

   (b) What is ambiguity? Show that the following grammar is ambiguous 

Sometimes a grammar may produce more than one parse tree for some (or all) of the strings it 

generates. When this happens we say that the grammar is ambiguous. More precisely, a grammar G is 

ambiguous iff there is at least one string in L(G) for which G produces more than one parse tree 

 

S->aB|bA 

A->aS|bAA|a 

B->bS|aBB|b 

aaabbabba → aaabbabbA (rule 2a) 

aaabbabbA → aabbabS (rule 1b) 

aabbabS → aabbaB (rule 3b) 



 

aabbaB → aabbS (rule 1a) 

aabbS → aabB (rule 3b) 

aabB → aaBB (rule 3a) 

aaBB → aB (rule 3c) 

aB → S (rule 1a) 

5) Let G be the grammar 

S->aB|bA 

A->a|aS|bAA 

B->b|bS|aBB 

For the string aaabbabbba find a   

i) Leftmost derivation  
S→ aB 
→  aaBB                   (Using B → aBB) 
→ aaaBBB                (Using B → aBB) 
→ aaabBB                (Using B → b) 
→ aaabbB                (Using B → b) 
→ aaabbaBB            (Using B → aBB) 
→ aaabbabB            (Using B → b) 
→ aaabbabbS          (Using B → bS) 
→ aaabbabbbA        (Using S → bA) 
→ aaabbabbba         (Using A → a) 

ii) Rightmost derivation  
S   → aB 

→  aaBB                    (Using B → aBB) 
→ aaBaBB                 (Using B → aBB) 
→ aaBaBbS               (Using B → bS) 
→ aaBaBbbA             (Using S → bA) 
→ aaBaBbba              (Using A → a) 
→ aaBabbba              (Using B → b) 
→ aaaBBabbba          (Using B → aBB) 
→ aaaBbabbba          (Using B → b) 
→ aaabbabbba           (Using B → b) 

 

iii) Parse tree 

 
 

 



 

 

b) Eliminate recursion  from the given grammar  

A --> B x y | x 

B --> C D 

C --> A | c 

D --> d 

 
 

6 a) Define Chomsky Normal form. Obtain the following grammar in CNF.  

S->ASB|ε 

A->aAS|a 

B->SbS|A|bb 

 

 



 

 
b) Show a regular grammar for the given language :{ w ∈ {a, b}*: w does not end in aa}. 

 

S → aA | bB | ε  

A → aC | bB | ε  

B → aA | bB | ε  

C → aC | bB 

 

 

 


