(S YEARS 4

\% '
* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

%
&

x CELEBp,

Internal Assessment 2 — October 2019
Scheme and Solutions

Sub: | Advanced Java and J2EE C(i;lel? 17CS553 |Branch: | ISE
Date: | 15.10.19 |Duration: | 90 min’s Max{gq | Sem/ | OBE
Marks: Sec:

Q. 1 a) What is Enumeration? Explain with an example

The Enum in Java is a data type which contains a fixed set of constants.

It can be used for days of the week (SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, and SATURDAY) , directions (NORTH, SOUTH, EAST, and WEST),
season (SPRING, SUMMER, WINTER, and AUTUMN or FALL), colors (RED, YELLOW,
BLUE, GREEN, WHITE, and BLACK) etc. According to the Java naming conventions, we
should have all constants in capital letters. So, we have enum constants in capital letters.

Java Enums can be thought of as classes which have a fixed set of constants (a variable that does
not change). The Java enum constants are static and final implicitly. It is available since JDK 1.5.

1. class EnumExamplel {
2. //defining the enum inside the class
3. public enum Season { WINTER, SPRING, SUMMER, FALL }
4. //main method
5. public static void main(String[] args) {
6. //traversing the enum
7. for (Season s : Season.values())
8. System.out.println(s);
9. 1}
Output:
WINTER
SPRING
SUMMER
FALL

Q. 1 b) Demonstrate how enumeration can be applied as a class types

Java Enumerations Are Class Types

As explained, a Java enumeration is a class type. Although you don’t instantiate an enum
using new, it otherwise has much the same capabilities as other classes. The fact that enum
defines a class gives powers to the Java enumeration that enumerations in other
languages simply do not have. For example, you can give them constructors, add instance
variables and methods, and even implement interfaces.

It is important to understand that each enumeration constant is an object of its enumeration
type. Thus, when you define a constructor for an enum, the constructor is called when each
enumeration constant is created. Also, each enumeration constant has its own copy of any
instance variables defined by the enumeration. For example, consider the following version
of Apple:

// Use an enum constructor, instance variable, and method.
enum Apple {
Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

private int price; // price of each apple

// Constructor
Apple (int p) { price = p; }

int getPrice() { return price; }

}

clase EnumDemol {
public static void main(String argsl(])

{

Rpple ap;

// Display price of Winesap.

System.out.println("Winesap costs " +
Apple.Winesap.getPrice () +
" cents.\n");

// Display all apples and prices.
System.out.println("All apple prices:");
for (Apple a : Apple.values())
System.out.println(a + " costs " + a.getPrice() +
" cents.");

}
}

The output is shown here:

Winesap costs 15 cente.

All apple prices:
Jonathan cosgts 10 cents.
GoldenDel costs 9 cents.
RedDel costs 12 cents.
Winesap costs 15 cents.
Cortland costs 8 cents.

When the variable ap is declared in main(), the constructor for Apple is called once for
each constant that is specified. Notice how the arguments to the constructor are specified,
by putting them inside parentheses after each constant, as shown here:

Jonathan(10), GoldenDel(9), RedDel(12), Winesap(1l5), Cortland(8);

Q. 2 a) What is Autoboxing? Write a Java program that demonstrates autoboxing and unboxing

Autoboxing
Beginning with [DK 5, Java added two important features: autoboxing and auto-unboxing.
Autoboxing is the process by which a primitive type is automatically encapsulated (boxed)
into its equivalent type wrapper whenever an object of that type is needed. There is no need
to explicitly construct an object. Auto-unboxing is the process by which the value of a boxed
object is automatically extracted (unboxed) from a type wrapper when its value is needed.
There is no need to call a method such as intValue() or doubleValue().

b)

HmiuLiL Tasici.

With autoboxing it is no longer necessary to manually construct an object in order to
wrap a primitive type. You need only assign that value to a type-wrapper reference. Java
automatically constructs the object for you. For example, here is the modern way to construct
an Integer object that has the value 100:

Integer iOb = 100; // autcbox an int

Notice that no object is explicitly created through the use of new. Java handles this for you,
automatically.

To unbox an object, simply assign that object reference to a primitive-type variable.
For example, to unbox iOb, you can use this line:

int 1 = 1i0b; // auto-unbox

Java handles the details for you.
Here is the preceding program rewritten to use autoboxing/unboxing:

// Demonstrate autoboxing/unboxing.
class AutoBox {
public static void main(String args([]) {
Integer iOb = 100; // autcbox an int

int i = i0Ob; // auto-unbox

System.out.println(i + " " + iOb); // displays 100 100

1
}

Q. 2 b) Demonstrate single member annotation with an example

Single-Member Annotations

A single-member annotation contains only one member. It works like a normal annotation
except that it allows a shorthand form of specifying the value of the member. When only one
member is present, you can simply specify the value for that member when the annotation
is applied—you don’t need to specify the name of the member. However, in order to use

this shorthand, the name of the member must be value.
Here is an example that creates and uses a single-member annotation:

import java.lang.annotation.¥*;
import java.lang.reflect.*;

// A single-member annotation.
@Retention(RetentionPolicy.RUNTIME)

@interface MySingle {
int wvalue(); // this variable name must be value

}

class Single {

// Annotate a method using a single-member annotation.
@MySingle (100)
public static void myMeth() {

Single ob = new Single();

try {
Method m = ob.getClass() .getMethod ("myMeth") ;

MySingle anno = m.getAnnotation(MySingle.class);
System.out.println(anno.value()); // displays 100

} catch (NoSuchMethodException exc) {
System.out.println("Method Not Found.");
}

}

public static void main(String args[]) {
myMeth () ;
1
}

As expected, this program displays the value 100. In the program, @MySingle is used to
annotate myMeth(), as shown here:

@MySingle (100)

Q. 3 a) What is transaction? Write a Java program to execute a database transaction.

hming passing 1t a true parameter, reactivating the AutoCommit teature.

Listing 6-19 illustrates how to process a transaction. The transaction in this examp
consists of two SQL statements, both of which update the Street address of rows in the
Customer table. Each SQL statement is executed separately and then the commit() methoc
is called. However, should either SQL statement throw an SQL exception, the catch{}
block reacts by rolling back the transaction before displaying the exception on the screer

Listing 6-19 String url = "jdbc:odbc:CustomerInformation®;
Executing a sString useriD = *"jim";

database String password = "keogh®;
transaction.

Statement DataRequestl, DataRequest2 ;
Connection Database; !
try (
Class.forName(*sun.jdbc,odbc.JdbcOdbecDriver®):;
Database = DriverManager.getConnection(url,userlD,password):;
}
catch (ClassNotFoundException error) {
System.err.printin({“Unable to load the JDBC/ODBC bridge.* + error);
System.exit(1l):
}
catch (SQLException error) |
System.err.printlin("Cannot connect to the database.® + error);
System.exit(2);
)
try (
Database .setAutoCommit(false)
String queryl = "UPDATE Customers SET Street
*WHERE FirstName = 'Bob'";
String query2 = “UPDATE Customers SET Street = '10 Main Street' " +
*WHERE FirstName = 'Tim'";
DataRequestl= Database.createStatement();
DataRequest2= Database.createStatement();
DataRequest .executelUpdate (gueryl);
DataRequest.executellpdate (qQuery2);
Database.commit () ;

if (con != null) {
try { :
System.err.println("Transaction is being rolled back
con.rollback():
\ car.ch(SQLBxception excep) {
System.err.print(* SQLException: *);
System.err.println{excep.getMessage());

‘5 Main Street' * +

|h2) Savepoints

Q. 4 a) What is Annotation? Explain various retention policies for annotations in Java

Annotations (Metadata)

Beginning with JDK 5, a new facility was added to Java that enables you to embed
supplemental information into a source file. This information, called an annotation, does not
change the actions of a program. Thus, an annotation leaves the semantics of a program
unchanged. However, this information can be used by various tools during both development
and deployment. For example, an annotation might be processed by a source-code generator.
The term metadata is also used to refer to this feature, but the term annotation is the most
descriptive and more commonly used.

(S} v J

Specifying a Retention Policy

Before exploring annotations further, it is necessary to discuss annotation retention policies.

A retention policy determines at what point an annotation is discarded. Java defines three
such policies, which are encapsulated within the java.lang.annotation.RetentionPolicy
enumeration. They are SOURCE, CLASS, and RUNTIME.

An annotation with a retention policy of SOURCE is retained only in the source file
and is discarded during compilation.

An annotation with a retention policy of CLASS is stored in the .class file during
compilation. However, it is not available through the JVM during run time.

An annotation with a retention policy of RUNTIME is stored in the .class file during
compilation and is available through the JVM during run time. Thus, RUNTIME retention
offers the greatest annotation persistence.

A retention policy is specified for an annotation by using one of Java's built-in annotations:
@Retention. Its general form is shown here:

@Retention(retention-policy)

Here, retention-policy must be one of the previously discussed enumeration constants. If no
retention policy is specified for an annotation, then the default policy of CLASS is used.

The following version of MyAnno uses @Retention to specify the RUNTIME retention
policy. Thus, MyAnno will be available to the JVM during program execution.

@Retention (RetentionPolicy.RUNTIME)
@interface MyAnno {

String str();

int wvall();

}

To do this, we need to configure @ Retention with one of three retention policies:
RetentionPolicy.SOURCE — visible by neither the compiler nor the runtime

|
2. RetentionPolicy.CLASS — visible by the compiler
3. RetentionPolicy. RUNTIME — visible by the compiler and the runtime

Q 4 b) Discuss how reflections can be used at runtime with annotations

e mrm e e m o mEmEmEy 1 mEEmEE i mEE oW O EmIE mEEE w Wm SmEW EEmEmET TEEEmE AR R WM mEm T REEE O W WE A T 1w WE | mem ww rmmw emwmwe

Here is a program that assembles all of the pieces shown earlier and uses reflection to
display the annotation associated with a method.

import java.lang.annotation.*;
import java.lang.reflect . *;

// Bn annctation type declaration.
@Retention(RetenticnPolicy.RUNTIME)
@interface MyAnno {

String str();

int wval();
}

class Meta |

// BAnnotate a method.
@MyAnno (str = "Annotation Example®, val = 100)
public static veoid myMeth() {

Meta ob = new Metal);

// Cbtain the annotaticon for this method
// and display the values of the members.
try {

f/{ Firat, get a Class object that represents
// this class.
Class ¢ = ob.getClass() ;

// Now, get a Method object that represents
f// this method.
Method m = c.getMethod("myMeth") ;

f// Next, get the annctation for this class.
MyAnno anno = m.getAnnotation (MyAnno.clasa);

// Finally, display the values.
System.out.println{anno.str({} + " " 4+ anno.vall());

} catch (NoSuchMethodException exc) |
Syatem,out .println("Method Not Found.");
}

}

public static void main(String args[l) |

myMeth () ;
}
}
The output from the program is shown here:
Annotation Example 100

This program uses reflection as described to obtain and display the values of str and val
in the MyAnno annotation associated with myMeth() in the Meta class. There are two things
to pay special attention to. First, in this line

MyAnno anno = m.getAnnotation(MyAnno.class);

notice the expression MyAnno.class. This expression evaluates to a Class object of type
MyAnno, the annotation. This construct is called a class literal. You can use this type of
expression whenever a Class object of a known class is needed. For example, this statement
could have been used to obtain the Class object for Meta:

Class ¢ = Meta.class;

Q. 5 a) What is the Result Set? Explain the types of Result Sets in JDBC

1. ResultSet object contain the methods that are used to copy data from
ResultSet 1nto java collection object or variable for further processing.

2. Data in the ResultSet is logically organized into the virtual table for further
processing. Result set along with row and column it also contains meta data.

3. ResultSet uses virtual cursor to point to a row of the table.

Scrollable Result Set

1. Until the release of JIDBC 2.1 API . the virtual cursor can move only in forward
directions. But today the virtual cursor can be positioned at a specific row.

2. There are six methods to position the cursor at specific location i addition to next() in
scrollable result set. firs() ,last(), absolute(), relative(), previous(), and getRow().

35 TS s position at first row.

7R (T position at last row.

5. previous().......... position at previous row.

6. absolute().......... To the row specified in the absolute function

7. relative()............ move relative to current row. Positive and negative no can be given.
Ex. relative(-4) ... 4 position backward direction.

8. getRow()......... returns the no of current row.

9. There are three constants can be passed to the createStatement()
10. Default is TYPE FORWARD ONLY. Otherwise three constant can be passed to the
create statement 1.) TYPE SCROLL INSENSITIVE

2.) TYPE_SCROLL_SENSITIVE

11. TYPE _SCROLL makes cursor to move both direction. INSENSITIVE makes changes
made by J2EE component will not reflect. SENSITIVE means changes by J2EE will
reflect in the result set.

Example code.
String sql=" select * from emp”;
DR=Db.createStatement(TYPE_SCROLL_INSENSITIVE);
RS=DR.executeQuery(sql);
12. Now we can use all the methods of ResultSet.

updatable Result Set.

1. Rows contained in the result set is updatable similar to how rows in the table can
be updated. This is possible by sending CONCUR UPDATABLE.

2. There are three ways in which result set can be changed. These are updating row ,
deleting a row, inserting a new row.

3. Update ResultSet

A ResultSet can have one of two concurrency levels:

1. ResultSet. CONCUR_READ_ONLY
2. ResultSet. CONCUR_UPDATABLE

e Once the executeQuery() method of the statement object returns a
result set. updatexxx() method is used to change the value of
column in the current row of result set.

e [t requires two parameters, position of the column in query. Second
parameter is value

e updateRow() method is called after all the updatexxx() methods
are called.

Example:

try{

}

String query= “select Fname, Lname from Customers
where Fname= ‘Mary’ and Lanme="Smith’;
DataRequest=Db.

createStatement(ResuliSet. CONCUR_UPDATABLE);
Rs= DataRequest.executeQuery(query);
Rs.updateString(“LastName”,”Smith”);
Rs.updateRow():

4. Delete row in result set

%+ By using absolute method positioning the virtual
cursor and calling deleteRow(int n) n is the number
of rows to be deleted.

** Rs.deleteRow(0) current row is deleted.

5. Imsert Row in result set

try{

%+ Once the executeQuery() method of the statement
object returns a result set. updatexxx() method is
used to insert the new row of result set.

< It requires two parameters, position of the column

in query. Second parameter is value

insertRow() method is called after all the

updatexxx() methods are called.

*,
”

String query= “select Fname, Lname from Customers
where Fname= ‘Mary’ and Lanme="Smith’;
DataRequest= Db.

createStatement(ResultSet. CONCUR_UPDATABLE);
Rs= DataRequest.executeQuery(query);
Rs.updateString(1 ,”Jon”);

Rs.updateString(2 ,”Smith”);

Rs.insertRow();

Q.6

ResultSet Holdability

The ResultSet holdability determines if a ResultSet is closed when the commit() method of the
underlying connection is called.

There are two types of holdability:

1. ResultSet.CLOSE_CURSORS_OVER_COMMIT
2. ResultSet HOLD_CURSORS_OVER_COMMIT

The CLOSE_CURSORS_OVER_COMMIT holdability means that all ResultSet instances are
closed when connection.commit() method is called on the connection that created the ResultSet.

The HOLD_CURSORS_OVER_COMMIT holdability means that the ResultSet is kept open
when the connection.commit() method is called on the connection that created the ResultSet.

a) What is Collection Framework? And explain methods defined by Collection interface

The Java Collections Framework standardizes the way in which groups of
objects are handled by your programs.

The framework had to be high-performance.

The implementations for the fundamental collections(dynamic arrays, linked
lists, trees, and hash tables) are highly efficient.

The framework had to allow different types of collections to work in a similar
manner and with a high degree of interoperability.

interface Collection<E>
E specifies the type of objects that the collection
Collection extends the Iterable interface.

Iterating through the list cane be done through the iteratable interface.

Methods in collection interface

add
boolean add(E obj)
adds obj to the invoking collection.
Returns true 1f obj was added to the collection.
Returns false if obj is already a member of the collection and
the collection does not allow duplicates.
addAll

boolean addAll(Collection<? extends E>c)
Adds all the elements of ¢ to the invoking collection.
Returns true if the operation succeeded

(i.e., the elements were added). Otherwise, returns false.

clear
void clear()

Removes all elements from the invoking collection.

contains
boolean contains(Object obj)
Returns true if obj is an element of the invoking collection.
Otherwise, returns false.
containsAll
boolean contains All{(Collection<?> ¢)

Returns true if the invoking collection contains all elements of c.
Otherwise, returns false.

equals
boolean equals(Object obj)
Returns true if the invoking collection and obj are equal.
Otherwise, returns false.
hashCode
int hashCode() Returns the hash code for the invoking collection.
IsEmpty
boolean isEmpty()
Returns true if the invoking collection is empty.
Otherwise, returns false.
iterator
Iterator<E> 1terator() Returns an iterator for the invoking collection.
remove
boolean remove(Object obj)
Removes one instance of ob; from the invokimng collection.

Returns true if the element was removed. Otherwise, returns false.

removeAll

boolean removeAll(Collection<?> ¢)

clear
void clear()

Removes all elements from the invoking collection.

contains
boolean contains(Object obj)
Returns true if obj is an element of the invoking collection.
Otherwise, returns false.
containsAll
boolean contains All{(Collection<?> ¢)

Returns true if the invoking collection contains all elements of c.
Otherwise, returns false.

equals
boolean equals(Object obj)
Returns true if the invoking collection and obj are equal.
Otherwise, returns false.
hashCode
int hashCode() Returns the hash code for the invoking collection.
IsEmpty
boolean isEmpty()
Returns true if the invoking collection is empty.
Otherwise, returns false.
iterator
Iterator<E> 1terator() Returns an iterator for the invoking collection.
remove
boolean remove(Object obj)
Removes one instance of ob; from the invokimng collection.

Returns true if the element was removed. Otherwise, returns false.

removeAll

boolean removeAll(Collection<?> ¢)

Returns true if the collection changed (i.e., elements were removed).
Otherwise, returns false.

retainAll
boolean retainAll(Collection<?> ¢)
Removes all elements from the invoking collection except those in c.

Returns true if the collection changed (i.e., elements were removed).
Otherwise, returns false.

size

mt size() Returns the number of elements held in the invoking
collection.

toArray
Object| | toArray()

Retumns an array that contains all the elements stored in the
mvoking collection.

The array elements are copies of the collection elements.
The array elements are copies of the collection elements.

If the size of array equals the number of elements, these are returned in
array.

Q. 7 a) Explain the following built in annotations with program as an example @override
@inherited @Retention

Annotations (Metadata)

Beginning with JDK 5, a new facility was added to Java that enables you to embed
supplemental information into a source file. This information, called an annotation, does not
change the actions of a program. Thus, an annotation leaves the semantics of a program
unchanged. However, this information can be used by various tools during both development
and deployment. For example, an annotation might be processed by a source-code generator.
The term metadata is also used to refer to this feature, but the term annotation is the most
descriptive and more commonly used.

@Override

@Override annotation assures that the subclass method is overriding the parent class method. If
1t 1s not so, compile time error occurs.

Sometimes, we does the silly mistake such as spelling mistakes etc. So, it is better to mark
@Override annotation that provides assurity that method is overridden.

class Animal{
void eatSomething(){ System.out.println("eating something"); }

}

class Dog extends Animal{
@OQOverride

void eatsomething(){System.out.println("eating foods"); }//should be eatSomething

|

oo O L B LD

. class TestAnnotation| {

. public static void main(String args[]){
. Animal a=new Dog():

13. a.eatSomething();

14. }}

R —
—_—0

[
D

I

Output:Comple Time Error

@Inherited

By default, annotations are not inherited to subclasses. The @Inherited annotation marks the
annotation to be inherited to subclasses.

1. @Inherited

2. @interface ForEveryone { }//Now it will be available to subclass also
jr @interface ForEveryone { }
5. class Superclass{ }
E;’) class Subclass extends Superclass{ }
@Retention

@Retention annotation is used to specify to what level annotation will be available.

I. //Creating annotation

2. import java.lang.annotation.*;

3. import java.lang.reflect.”;

4,

5. @Retention(RetentionPolicy. RUNTIME)
6. @Target(ElementType. METHOD)
7. @interface MyAnnotation {

8. int value();

9. }

10.

1. //Applying annotation

12. class Hello{

13. @MyAnnotation(value=10)

14. public void sayHello(){System.out.println("hello annotation"): }
15. }

16.

17. //Accessing annotation

18. class TestCustomAnnotation] {

19. public static void main(String args|])throws Exception{

20.

21. Hello h=new Hello():

22. Method m=h.getClass().getMethod("sayHello"):

23.

24. MyAnnotation manno=m.getAnnotation(MyAnnotation.class);
25. System.out.println("value is: "+manno.value());

26. }}

27. Output:value 1s: 10

Q. 7 b) Explain the following methods of java.lang.Enum with an example program i)ordinal()
ii)compareTo()

AARILL 1AL LI ERALL L LA e
Remember, you can compare two enumeration references for equality by using = =.
The following program demonstrates the ordinal(), compareTo(), and equals() methods:

// Demonstrate ordinal(), compareTo(), and equals().

// BAn enumeration of apple wvarieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemod |
public static veid main(String args(])

{

Apple ap, ap2, ap3?;

// Obtain all ordinal values using ordinal().
System.out.println("Here are all apple constants" +
" and their ordinal values: ");
for (Apple a : Apple.values())
System.out.printlnfa + " " + a.ordinal());

ap = Apple.RedDel;
ap2 Apple.GoldenDel;
ap3 = Apple.RedDel;

System.ocut.println() ;
// Demonstrate compareTo() and equale()
if (ap.compareTo(ap2) < 0)

System.out.printlniap + " comes before " + ap2);

if (ap.compareTo(ap2) = 0)
System.out .println{ap2 + " comes before " + ap);

if (ap.compareTo(ap3) == 0)
System.out.println{ap + " equals " + ap3);

System.out.printlin();

if (ap.equals (ap2))
System.out.println("EBrror! ") ;

if (ap.equals(ap3))
System.out.printlniap + " equals " + ap3);

if (ap == ap3)
System.out.printlniap + " == " + ap3);

The output from the program is shown here:

Here are all apple constants and their ordinal values:
Jonathan 0

GoldenDel 1

RedDel 2

Winesap 3

Cortland 4

GoldenDel comes before RedDel
EedDel equals RedDel

RedDel equals RedDel
RedDel == RedDel

