

Internal Assessment Test 2 – Oct 2019

Sub: Dot Net Framework for application development
Sub

Code:
15CS564 Branch: CSE

Date: 15/10/19 Duration: 90 mins Max Marks: 50
Sem /

Sec:
V A/B/C OBE

Answer any FIVE FULL

Questions

MARK S CO RB
T

1 (a) Explain the concept of params array with an example program.

Answer:

 The "params" keyword in C# allows a method to accept a variable number of

arguments. C# params works as an array of objects.

 By using params keyword in a method argument definition, we can pass a

number of arguments.

 Instead of using various overloaded methods to pass multiple values, we can

simply create an array and pass it as an argument or a comma separated list of

values.

 For example, a Student class with a method, TotalMarks that returns the sum of

all marks. Each grade may have a different number of subjects and their

respective marks. The 3rd grade may have 3 subjects only. The 8th grade may

have 4 subjects while a 9th grade may have 5 subjects. We can use params in

this case and pass 3, 4, and 5 comma separated values.

 Example program:

 Output:

[06]

(b) What are Abstract Classes? Describe the concept with an example.

Answer:

 An abstract class is a special type of class that cannot be instantiated and acts as a

base class for other classes.

 Abstract class members marked as abstract must be implemented by derived

classes.

 The purpose of an abstract class is to provide a common definition of the base

class that multiple derived classes can share and can be used only as a base class

and never want to create the object of this class.

 Any class can be converted into an abstract class by adding the abstract modifier

to it.

 Example program:

using System;

abstract class Shape1

 {

 public abstract float Area();

 public abstract float Circumference();

 }

 class Rectangle1 : Shape1

 {

 float L=10;

 float B=20;

 public override float Area()

 {

 return L * B;

 }

 public override float Circumference()

 {

 return 2 * (L + B);

 }

 }

 class Circle1 : Shape1

 {

 float R=10;

 public override float Area()

 {

 return 3.14F * R * R;

 }

 public override float Circumference()

 {

 return 2 * 3.14F * R;

 }

 }

 class Program

 {

 public static void Calculate(Shape1 S)

 {

 Console.WriteLine("Area : {0}", S.Area());

 Console.WriteLine("Circumference : {0}", S.Circumference());

 }

 public static void Main(string[] args)

 {

 Rectangle1 R = new Rectangle1();

 Calculate(R);

 Circle1 C = new Circle1();

[04]

 Calculate(C);

 }

 }

 Output:

2 (a) Describe how to manage system resources by using a Garbage Collector.

The garbage collector (GC) manages the allocation and release of memory. The garbage

collector serves as an automatic memory manager.

 You do not need to know how to allocate and release memory or manage the

lifetime of the objects that use that memory.

 An allocation is made any time you declare an object with a “new” keyword or a

value type is boxed. CLR (common language runtime) allocates memory for the

object from heap.

 When there isn‟t enough memory to allocate an object, the GC must collect and

dispose of garbage memory to make memory available for new allocations.

 This process is known as garbage collection.

GC works on a block of memory to store objects called managed heap.

When garbage collection process is put in motion, it checks for dead objects and the

objects which are no longer used. Then, it compacts the space of live object and tries to

free more memory.

Heap is managed by different 'Generations':

 0 Generation (Zero): This generation holds short-lived objects, e.g., Temporary

objects. GC initiates garbage collection process frequently in this generation.

 1 Generation (One): This generation is the buffer between short-lived and long-

lived objects.

 2 Generation (Two): This generation holds long-lived objects that needs to be

persisted for a certain amount of time like a static and global variable,

 Objects which are not collected in generation Zero, are then moved to generation

1, such objects are known as survivors, similarly objects which are not collected

in generation One, are then moved to generation 2 and from there onwards

objects remain in the same generation.

There are no specific timings for GC to get triggered. GC automatically starts operation

on the following conditions:

 When virtual memory is running out of space.

 When allocated memory is suppressed acceptable threshold (when GC found if

the survival rate (living objects) is high, then it increases the threshold

allocation).

 When we call GC.Collect() method explicitly, as GC runs continuously, we

actually do not need to call this method.

The GC class controls the garbage collector of the system. Some of the methods in the

GC class are given as follows:

1. GC.GetGeneration() Method : This method returns the generation number of

the target object. It requires a single parameter i.e. the target object for which the

generation number is required.

2. GC.GetTotalMemory() Method : This method returns the number of bytes that

are allocated in the system. It requires a single boolean parameter where true

means that the method waits for the occurrence of garbage collection before

[06]

returning and false means the opposite.

3. GC.Collect() Method : Garbage collection can be forced in the system using

the GC.Collect() method. This method requires a single parameter i.e. number of

the oldest generation for which garbage collection occurs.

2 (b) Examine Sealed Classes and Sealed Methods in brief

Answer:

 Sealed classes are used to restrict the inheritance feature of object oriented

programming.

 Once a class is defined as a sealed class, this class cannot be inherited.

 In C#, the sealed modifier is used to declare a class as sealed.

 If a class is derived from a sealed class, compiler throws an error.

 When you define new methods or properties in a class, you can prevent deriving

classes from overriding them by not declaring them as virtual.

 It is an error to use the abstract modifier with a sealed class, because an abstract

class must be inherited by a class that provides an implementation of the abstract

methods or properties.

 When applied to a method or property, the sealed modifier must always be used

with override.

 Because structs are implicitly sealed, they cannot be inherited.

sealed class SealedClass

{

 public int x;

 public int y;

}

class SealedTest2

{

 static void Main()

 {

 var sc = new SealedClass();

 sc.x = 110;

 sc.y = 150;

 Console.WriteLine($"x = {sc.x}, y = {sc.y}");

 }

}

// Output: x = 110, y = 150

[04]

3 (a) Discuss the properties in C#.

Answer:

 Properties are the special type of class members that provides a flexible

mechanism to read, write, or compute the value of a private field.

 Properties can be used as if they are public data members, but they are actually

special methods called accessors. Example: get, set

 This enables data to be accessed easily and help to promote the flexibility and

safety of methods.

Syntax:

<access_modifier> <return_type> <property_name>

{

 get { // body }

 set { // body }

}

 Read and Write Properties: When property contains both get and set methods.

 Read-Only Properties: When property contains only get method.

 Write Only Properties: When property contains only set method.

Example for get accessor:

class Student {

// Declare roll_no field

private int roll_no;

// Declare roll_no property

public int Roll_no

 {

 get

 {

 return roll_no;

 }

 set

 {

 roll_no = value;

 }

}

}

Example for set accessor:

class Student {

// Declare roll_no field

private int roll_no;

// Declare roll_no property

public int Roll_no

{

 get

 {

 return roll_no;

 }

}

 }

[06]

4 (a) Define interface. Explain how interfaces are created with an example

Answer:
 An interface contains definitions for a group of related functionalities that a class

or a struct can implement. Interfaces specify what a class must do and not how.

 Like a class, Interface can have methods, properties, events, and indexers as its

members.

 Interfaces will contain only the declaration of the members.

 The implementation of interface‟s members will be given by class who implements

the interface implicitly or explicitly.

 By default, all the members of Interface are public and abstract.

 The interface is defined by using the keyword „interface„.

 Interface cannot contain fields because they represent a particular implementation

of data.

 It is used to provide total abstraction.

Syntax to declare interface

interface <interface_name >

{

 // declare Events

 // declare indexers

 // declare methods

 // declare properties

}

[10]

Syntax to inherit interface

class class_name : interface_name

Example program:

using System.Collections.Generic;
using System.Linq;
using System.Text;
using System;

namespace InterfaceApplication {

 public interface ITransactions {
 // interface members
 void showTransaction();
 double getAmount();
 }
 public class Transaction : ITransactions {
 private string tCode;
 private string date;
 private double amount;

 public Transaction() {
 tCode = " ";
 date = " ";
 amount = 0.0;
 }
 public Transaction(string c, string d, double a) {
 tCode = c;
 date = d;
 amount = a;
 }
 public double getAmount() {
 return amount;
 }
 public void showTransaction() {
 Console.WriteLine("Transaction: {0}", tCode);
 Console.WriteLine("Date: {0}", date);
 Console.WriteLine("Amount: {0}", getAmount());
 }
 }
 class Tester {

 static void Main(string[] args) {
 Transaction t1 = new Transaction("001", "8/10/2012", 78900.00);
 Transaction t2 = new Transaction("002", "9/10/2012", 451900.00);

 t1.showTransaction();
 t2.showTransaction();
 Console.ReadKey();
 }
 }
}

 5 (a)

Write a C# program to implement QUEUE operations Insert and Delete using

Generics concepts.

Answer:

[10]

6 (a) Define inheritance. Explain types of inheritance with an example.

Answer:

 Inheritance is a feature of object-oriented programming languages that allows you

to define a base class that provides specific functionality (data and behavior) and to

define derived classes that either inherit or override that functionality.

 The class whose members are inherited is called the base class.

 The class that inherits the members of the base class is called the derived class.

 A class can only inherit from a single class.

 Inheritance is transitive. For example, type D can inherit from type C, which

inherits from type B, which inherits from the base class type A.

 As a result, the members of type A are available to type D.

Types of inheritance:

1. Single inheritance

2. Multilevel inheritance

3. Hierarchical inheritance

4. Multiple inheritance

5. Hybrid inheritance

[10]

7 (a) What are collection classes? Explain in detail about collection classes.
Answer:

 Collections standardize the way of which the objects are handled by your program.
 It contains a set of classes to contain elements in a generalized manner.
 With the help of collections, the user can perform several operations on objects like

the store, update, delete, retrieve, search, sort etc.

[10]

