
CMR
INSTIT UTE OF
TECHNLOGY

First Internal Test-October 2019
Sub:
Software Engineering

Sub Code:
18CS35

Branch:
ISE

Date:
12/10/2019

Duration:
90 min’s

Max Marks:
50

Sem/Sec:
III A ,B,C

OBE

Scheme and Solution

MARKS

1 (a) Draw a context model for Library Management System. How the interactions are modeled?
[6M].

1 (b) With the help of neat state diagram, illustrate the working of a telephone calling system.[4M]

USN

2(a) What is Model Driven Engineering? State the three types of abstract Design models
recommended by MDA. Distinguish between MDA and MDE.[8M]

 Model-driven engineering (MDE) is an approach to software development where models rather than
programs are the principal outputs of the development process.

 The programs that execute on a hardware/software platform are then generated automatically from
the models.

 Proponents of MDE argue that this raises the level of abstraction in software engineering so that
engineers no longer have to be concerned with programming language details or the specifics of
execution platforms.
Types of models

 A computation independent model (CIM)
 These model the important domain abstractions used in a system. CIMs are sometimes

called domain models.
 A platform independent model (PIM)

 These model the operation of the system without reference to its implementation. The PIM is
usually described using UML models that show the static system structure and how it
responds to external and internal events.

 Platform specific models (PSM)
 These are transformations of the platform-independent model with a separate PSM for each

application platform. In principle, there may be layers of PSM, with each layer adding some
platform-specific detail.

2 (b) Draw a sequence diagram describing data collection of Air Traffic Control system [2M]

3 (a) What is Design pattern? Explain four elements of design pattern.[5M]
 A design pattern is a way of reusing abstract knowledge about a problem and its solution.
 A pattern is a description of the problem and the essence of its solution.
 It should be sufficiently abstract to be reused in different settings.
 Pattern descriptions usually make use of object-oriented characteristics such as inheritance and

polymorphism.
 Patterns and Pattern Languages are ways to describe best practices, good designs, and capture

experience in a way that it is possible for others to reuse this experience.
 Name

 A meaningful pattern identifier.
 Problem description.
 Solution description.

 Not a concrete design but a template for a design solution that can be instantiated in different
ways.

 Consequences
 The results and trade-offs of applying the pattern.

The Observer pattern
 Name

 Observer.
 Description

 Separates the display of object state from the object itself.
 Problem description

 Used when multiple displays of state are needed.
 Solution description

 See slide with UML description.
 Consequences

 Optimisations to enhance display performance are impractical.

Pattern name Observer
Description Separates the display of the state of an object from the object itself and allows

alternative displays to be provided. When the object state changes, all displays are
automatically notified and updated to reflect the change.

Problem
description

In many situations, you have to provide multiple displays of state information, such
as a graphical display and a tabular display. Not all of these may be known when
the information is specified. All alternative presentations should support interaction
and, when the state is changed, all displays must be updated.

This pattern may be used in all situations where more than one display format for
state information is required and where it is not necessary for the object that
maintains the state information to know about the specific display formats used.

Pattern
name

Ob7server

Solution
description

This involves two abstract objects, Subject and Observer, and two concrete objects,
ConcreteSubject and ConcreteObject, which inherit the attributes of the related
abstract objects. The abstract objects include general operations that are applicable
in all situations. The state to be displayed is maintained in ConcreteSubject, which
inherits operations from Subject allowing it to add and remove Observers (each
observer corresponds to a display) and to issue a notification when the state has
changed.
The ConcreteObserver maintains a copy of the state of ConcreteSubject and
implements the Update() interface of Observer that allows these copies to be kept
in step. The ConcreteObserver automatically displays the state and reflects changes
whenever the state is updated.

Consequence
s

The subject only knows the abstract Observer and does not know details of the
concrete class. Therefore there is minimal coupling between these objects. Because
of this lack of knowledge, optimizations that enhance display performance are
impractical. Changes to the subject may cause a set of linked updates to observers
to be generated, some of which may not be necessary.

3 (b) Explain terms i)OO Design using UML ii) context model iii) Dynamic Model [5M]

i.UML
 Activity diagrams, which show the activities involved in a process or in data processing .
 Use case diagrams, which show the interactions between a system and its environment.
 Sequence diagrams, which show interactions between actors and the system and between system

components.
 Class diagrams, which show the object classes in the system and the associations between these

classes.
 State diagrams, which show how the system reacts to internal and external events.

ii. Context model

 Context models are used to illustrate the operational context of a system - they show what lies
outside the system boundaries.

 Social and organisational concerns may affect the decision on where to position system boundaries.
Architectural models show the system and its relationship with other systems

iii. Dynamic model (Interaction models)
 Modeling user interaction is important as it helps to identify user requirements.
 Modeling system-to-system interaction highlights the communication problems that may arise.
 Modeling component interaction helps us understand if a proposed system structure is likely to

deliver the required system performance and dependability.
 Use case diagrams and sequence diagrams may be used for interaction modeling.

Example:

4 (a) Discuss the types of testing at various stages of SDLC. [5M]
 Development testing
 Test-driven development
 Release testing
 User testing

Stages of testing
 Development testing, where the system is tested during development to discover bugs and defects.

 Release testing, where a separate testing team test a complete version of the system before it is
released to users.

User testing, where users or potential users of a system test the system in their own environment

4 (b) What is software reuse? State the general models of open source licenses. [5M]

Software Reuse : Most modern software is constructed by reusing existing components or systems. When
you are developing software, you should make as much use as possible of existing code.

 An approach to development based around the reuse of existing software emerged and is now
generally used for business and scientific software.
License models

 The GNU General Public License (GPL). This is a so-called ‘reciprocal’ license that means that if
you use open source software that is licensed under the GPL license, then you must make that
software open source.

 The GNU Lesser General Public License (LGPL) is a variant of the GPL license where you can write
components that link to open source code without having to publish the source of these components.

 The Berkley Standard Distribution (BSD) License. This is a non-reciprocal license, which means you
are not obliged to re-publish any changes or modifications made to open source code. You can
include the code in proprietary systems that are sold.

5 (a) What is alpha, beta and acceptance testing.? Explain six stages of acceptance testing process.
[6M]

 User or customer testing is a stage in the testing process in which users or customers provide input
and advice on system testing.

 User testing is essential, even when comprehensive system and release testing have been carried out.
 The reason for this is that influences from the user’s working environment have a major effect

on the reliability, performance, usability and robustness of a system. These cannot be
replicated in a testing environment.

 Alpha testing
 Users of the software work with the development team to test the software at the developer’s

site.
 Beta testing

 A release of the software is made available to users to allow them to experiment and to raise
problems that they discover with the system developers.

 Acceptance testing
 Customers test a system to decide whether or not it is ready to be accepted from the system

developers and deployed in the customer environment. Primarily for custom systems.

 Define acceptance criteria
 Plan acceptance testing
 Derive acceptance tests
 Run acceptance tests
 Negotiate test results
 Reject/accept system

5 (b) Explain development testing. Explain the three levels of granularity carried out in testing.[4M]
 Development testing includes all testing activities that are carried out by the team developing the

system.
 Unit testing, where individual program units or object classes are tested. Unit testing should

focus on testing the functionality of objects or methods.
 Component testing, where several individual units are integrated to create composite

components. Component testing should focus on testing component interfaces.
 System testing, where some or all of the components in a system are integrated and the

system is tested as a whole. System testing should focus on testing component interactions.

6 Draw a neat diagram and explain the four phases and nine work flows of Rational Unified Process
(RUP).[10M]

 RUP is divided into four phases, named:
 Inception
 Elaboration
 Construction
 Transition

Inception
 Overriding goal is obtaining buy-in from all interested parties
 Initial requirements capture
 Cost Benefit Analysis
 Initial Risk Analysis
 Project scope definition
 Defining a candidate architecture
 Development of a disposable prototype
 Initial Use Case Model (10% - 20% complete)
 First pass at a Domain Model

Elaboration
Requirements Analysis and Capture

– Use Case Analysis
• Use Case (80% written and reviewed by end of phase)
• Use Case Model (80% done)
• Scenarios

– Sequence and Collaboration Diagrams
– Class, Activity, Component, State Diagrams

– Glossary (so users and developers can speak common vocabulary)
– Domain Model

• to understand the problem: the system’s requirements as they exist within the context
of the problem domain

– Risk Assessment Plan revised
– Architecture Document

Construction
Focus is on implementation of the design:

– cumulative increase in functionality
– greater depth of implementation (stubs fleshed out)
– greater stability begins to appear
– implement all details, not only those of central architectural value
– analysis continues, but design and coding predominate

Transition
 The transition phase consists of the transfer of the system to the user community
 It includes manufacturing, shipping, installation, training, technical support and maintenance
 Development team begins to shrink
 Control is moved to maintenance team
 Alpha, Beta, and final releases
 Software updates
 Integration with existing systems (legacy, existing versions, etc.)

7 (a) List out all the guidelines for testing. [3M]
General testing guidelines

 Test software with sequences which have only a single value.
 Use sequences of different sizes in different tests.
 Derive tests so that the first, middle and last elements of the sequence are accessed.
 Test with sequences of zero length.
 Choose inputs that force the system to generate all error messages
 Design inputs that cause input buffers to overflow
 Repeat the same input or series of inputs numerous times
 Force invalid outputs to be generated
 Force computation results to be too large or too small.

7 (b) Explain Test-driven development (TDD), with a block diagram Explain TDD activities and
benefits of TDD. [7M]

 Test-driven development (TDD) is an approach to program development in which you inter-leave
testing and code development.

 Tests are written before code and ‘passing’ the tests is the critical driver of development.
 You develop code incrementally, along with a test for that increment. You don’t move on to the next

increment until the code that you have developed passes its test.
 TDD was introduced as part of agile methods such as Extreme Programming. However, it can also

be used in plan-driven development processes.

TDD process activities
 Start by identifying the increment of functionality that is required. This should normally be small and

implementable in a few lines of code.
 Write a test for this functionality and implement this as an automated test.
 Run the test, along with all other tests that have been implemented. Initially, you have not

implemented the functionality so the new test will fail.
 Implement the functionality and re-run the test.
 Once all tests run successfully, you move on to implementing the next chunk of functionality.
Benefits of test-driven development:
Code coverage

 Every code segment that you write has at least one associated test so all code written has at
least one test.

 Regression testing
 A regression test suite is developed incrementally as a program is developed.

 Simplified debugging
 When a test fails, it should be obvious where the problem lies. The newly written code needs

to be checked and modified.
 System documentation

The tests themselves are a form of documentation that describe what the code should be doing

