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Answer any FIVE FULL Questions MARKS CO RBT 

1 (a) Discuss in detail about threads [05] CO2 L2 

   (b) Explain the relation between process and thread with the help of a relevant        

diagram 

       [05] CO2 L1 

2 (a)   Describe MPI program structure with a neat diagram [05] CO2 L1 

   (b)  Illustrate developing parameter sweep application on Aneka [05] CO1 L2 

3 (a)  Differentiate Aneka threads with Common threads [10] CO3 L2 

4 (a) Distinguish between domain and functional decomposition techniques with 

illustrative examples 

[10] CO3 L2 

              

 

CI      CCI       HOD 

 

 

 

 

 

 

 

 

USN           

 
Internal Assessment Test 2 – October 2019 

Sub: Cloud Computing and its Applications Sub Code: 15CS742 Branch: CSE 

Date: 12 / 10 / 2019 Duration: 90 min’s Max Marks: 50 Sem / Sec: VII/ A,B  & C OBE 

Answer any FIVE FULL Questions MARKS CO RBT 

1 (a) Discuss in detail about threads [05] CO2 L2 

   (b)  Explain the relation between process and thread with the help of a relevant diagram  [05] CO2 L1 

2 (a)  Describe MPI program structure with a neat diagram [05] CO2 L1 

   (b) Illustrate developing parameter sweep application on Aneka        [05] CO1 L2 

3 (a)  Differentiate Aneka threads with Common threads [10] CO3 L2 

4 (a) Distinguish between domain and functional decomposition techniques with 

illustrative examples 

[10] CO3 L3 

 

 

 

CI      CCI       HOD 



 

 

  

5 (a)  Explain work flow with practical example [06] CO2 L2 

   (b) Describe two work flow technologies [04] CO1 L1 

6 (a) Explain the importance of computation and communication with respect to the 

design of parallel and distributed applications.  
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     (b) Discuss about POSIX threads [04] CO3 L2 

7 (a) Describe the different task based application models [06] CO1 L1 
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computing 

[04] CO3 L3 

 

 

CI      CCI       HOD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

5 (a) Explain work flow with practical example [06] CO2 L2 

   (b) Describe two work flow technologies [04] CO1 L1 

6 (a) Explain the importance of computation and communication with respect to the 

design of parallel and distributed applications.  

[06] CO3 L3 

   (b) Discuss about POSIX threads [04] CO3 L2 

7 (a)  Describe the different task based application models 
 

[06] CO1 L1 

    (b) What is data- intensive computing? Describe the open challenges in data-intensive 

computing 

[04] CO3 L2 

 

 

CI      CCI       HOD 

 

 

 

 

 

 



 

 
CO PO Mapping 

Course Outcomes 

M
o
d

u
le

s 

co
v
er

ed
 

P
O

1
 

P
O

2
 

P
O

3
 

P
O

4
 

P
O

5
 

P
O

6
 

P
O

7
 

P
O

8
 

P
O

9
 

P
O

1
0

 

P
O

1
1

 

P
O

1
2

 

P
S

O
1

 

P
S

O
2

 

P
S

O
3

 

P
S

O
4

 

CO1 

Explain cloud computing, 

virtualization and classify services 

of cloud computing 

1,2 2 1 2 - 1 - - - - - - - - 1 - - 

CO2 
Illustrate architecture and 

programming in cloud 
2,3,4 2 2 2 1 2 1 - - - - - - 1 1 - 1 

CO3 
Describe the platforms for 

development of cloud applications 
4,5 2 2 2 2 2 1 - - - - - - 2 2 - 1 

CO4 List the applications of cloud 4,5 2 2 2 2 2 1 - - - - - - 2 2 - 1 

 

 

 

COGNITIVE 

LEVEL 
REVISED BLOOMS TAXONOMY KEYWORDS 

L1 
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, 

when, where, etc.  

L2 
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, 

discuss, extend  

L3 
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, 

change, classify, experiment, discover.  

L4 
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, 

infer.  

L5 
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, 

discriminate, support, conclude, compare, summarize.  

 

 

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) 
CORRELATION 

LEVELS 

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation 

PO2 Problem analysis PO8 Ethics 1 Slight/Low 

PO3 Design/development of solutions PO9 Individual and team work 2 
Moderate/ 

Medium 

PO4 
Conduct investigations of 

complex problems 
PO10 Communication 3 

Substantial/ 

High 

PO5 Modern tool usage PO11 Project management and finance  

PO6 The Engineer and society PO12 Life-long learning  

PSO1 Develop applications using different stacks of web and programming technologies 

PSO2 Design and develop secure, parallel,  distributed, networked, and digital systems 

PSO3 Apply software engineering methods to design, develop, test and manage software systems. 

PSO4 Develop  intelligent applications for business and industry  

 

 

 



Scheme Of Evaluation
Internal Assessment Test 2 – Oct 2019

Sub: Cloud Computing and its Applications Code: 15CS742

Date: 12/10/2019 Duration: 90mins
Max

Marks: 50
Sem: VII Branch: A, B, C

Note: Answer Any Five Questions

Question
#

Description Marks Distribution Max
Marks

1

a) Discuss in detail about threads

♦ What is a thread?
♦ Operating System support for thread
♦ Context switching
♦ Implicit and explicit threading

1 M

1 M

2 M

1 M

5 M

10 M

b) Explain the relation between process and thread with 
the help of a relevant diagram                           

♦ Pictorial representation
♦ What is main thread and how it relates to 

execution
♦ Any example or code.

2 M

2 M

1 M

5 M

2

a) Describe MPI program structure with neat diagram
♦ Need of MPI
♦ Set of routines supported by programming 

language
♦ MPI program structure

1 M

2M

2M

5 M

10 Mb) Illustrate developing parameter sweep application on 
Aneka

♦ Explain PSM
♦ What is Namespace
♦ 3 Namespaces:

o Aneka.PSM.Core
o Aneka.PSM.Workbench
o Aneka.PSM.Console

1 M

1M

3M
5 M

3

Differentiate Aneka threads with Common threads

♦ Interface Compatibility
♦ Thread Life Cycle

2 M

2 M

10 M 10 M



♦ Thread Synchronization
♦ Thread Priorities
♦ Type Serialization

2 M

2 M

2 M

4

Distinguish between domain and functional 
decomposition techniques with illustrative examples

♦ Definition of Domain Decomposition
♦ Use Cases
♦ Pictorial Representation
♦ Definition of Functional Decomposition
♦ Use Cases
♦ Pictorial Representation

2M

2 M

1M

2M

2 M

1M

10 M 10 M

5

a)

Explain workflow with practical example
♦ What is workflow
♦ Scientific workflow
♦ Directed Acyclic Graph (DAG)
♦ Satellite image processing (Example)

1 M

1 M

1 M

3 M

6 M

10 Mb) Describe two workflow technologies
Explain any of two items from the following:

♦ Kepler
♦ DAGMan
♦  Cloudbus Workflow Management System
♦ Offspring

2 M

2 M 4 M

6

a) Explain the importance of computation and 
communication with respect to the design of parallel 
and distributed applications

♦ Two assumptions on the computations
♦ Queuing techniques for threads
♦ Why communication between threads are 

required

 2 M

2 M

2 M     

  

       6 M

10 Mb) Discuss about POSIX threads 
♦ Abbreviation and which OS it is used for
♦ Points to be remembered from programming 

perspective such as:
o Logical sequence
o Life of thread
o Status of thread
o Synchronization structure

♦ Programming Language compatibility

1 M

2M

1 M

     

      4 M     

7 a) Describe the different task-based application models
Briefly discuss about following three:

♦ Embarrassingly parallel application
♦ Parameter sweep application
♦ MPI applications

2 M

2M

2 M

6 M 10 M



   

b) What is data- intensive computing? Describe the open 
challenges in data-intensive computing

♦ Justify the model with Peta Bytes of Data and 
rate is more

♦ Write any 3 from the below open challenges:
o Scaling of dataset
o In memory data structure handling
o Data signature generation techniques
o Hybrid interconnection architectures
o Distributed file systems

1 M

3 M 4 M



 
 

 
Internal Assessment Test 1 – March 2019 

Sub: Cloud Computing and its Applications 
Sub 

Code: 
15CS742 Branch: CSE 

Date: 12/10/19 Duration: 90 mins Max Marks: 50 
Sem / 

Sec: 
VII A/B/C OBE 

Answer any FIVE FULL Questions 
MARKS CO RBT 

1 (a) Discuss in detail about threads  

Answer: 

A thread identifies a single control flow, which is a logical sequence of 

instructions, within a process. By logical sequence of instructions, we mean a 

sequence of instructions that have been designed to be executed one after the 

other one. More commonly, a thread identifies a kind of yarn that is used for 

sewing, and the feeling of continuity that is expressed by the interlocked fibers 

of that yarn is used to recall the concept that the instructions of thread express a 

logically continuous sequence of operations. 

 

Operating systems that support multithreading identify threads as the minimal 

building blocks for expressing running code. This means that, despite their 

explicit use by developers, any sequence of instruction that is executed by the 

operating system is within the context of a thread. Consequently, each process 

contains at least one thread but, in several cases, is composed of many threads 

having variable lifetimes. Threads within the same process share the memory 

space and the execution context; besides this, there is no substantial difference 

between threads belonging to different processes 

[05] CO2 L2 

1(b) Explain the relation between process and thread with the help of a relevant        

diagram 
Answer: 

Figure below provides an overview of the relation between threads and 

processes and a simplified representation of the runtime execution of a 

multithreaded application. A running program is identified by a process, which 

contains at least one thread, also called the main thread. Such a thread is 

implicitly created by the compiler or the runtime environment executing the 

program. This thread is likely to last for the entire lifetime of the process and 

be the origin of other threads, which in general exhibit a shorter duration. As 

main threads, these threads can spawn other threads. There is no difference 

between the main thread and other threads created during the process lifetime. 

Each of them has its own local storage and a sequence of instructions to 

execute, and they all share the memory space allocated for the entire process. 

The execution of the process is considered terminated when all the threads are 

completed. 

[05] CO2 L1 
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2 (a) Describe MPI program structure with a neat diagram 
Answer: 

 

Message Passing Interface (MPI) is a specification for developing parallel programs that 

communicate by exchanging messages. Compared to other models of task computing, MPI 

introduces the constraint of communication that involves MPI tasks that need to run at the 

same time. MPI has originated as an attempt to create common ground from the several 

distributed shared memory and message-passing infrastructures available for 

distributed computing. Nowadays, MPI has become a de facto standard for 

developing portable and efficient message passing HPC applications. Interface 

specifications have been defined and implemented for C/C11 and Fortran. 

 
To create an MPI application it is necessary to define the code for the MPI process 

that will be executed in parallel. This program has, in general, the structure 

described in Figure below. The section of code that is executed in parallel is clearly 

identified by two operations that set up the MPI environment and shut it down, 

respectively. In the code section defined within these two operations, it is possible 

to use all the MPI functions to send or receive messages in either asynchronous or 

synchronous mode. 

 
 

[05] CO2 L1 



2(b) Illustrate developing parameter sweep application on Aneka 
Answer:  

Aneka integrates support for parameter-sweeping applications on top of the task 

model by means of a collection of client components that allow developers to 

quickly prototype applications through either programming APIs or graphical user 

interfaces (GUIs). The set of abstractions and tools supporting the development of 

parameter sweep applications constitutes the Parameter Sweep Model (PSM). 

The PSM is organized into several namespaces under the common root Aneka.PSM. 

More precisely: 

• Aneka.PSM.Core (Aneka.PSM.Core.dll) contains the base classes for 

defining a template task and the client components managing the generation 

of tasks, given the set of parameters. 

• Aneka.PSM.Workbench (Aneka.PSM.Workbench.exe) and 

Aneka.PSM.Wizard (Aneka.PSM. Wizard.dll) contain the user interface 

support for designing and monitoring parameter sweep applications. Mostly 

they contain the classes and components required by the Design Explorer, 

which is the main GUI for developing parameter sweep applications. 

• Aneka.PSM.Console (Aneka.PSM.Console.exe) contains the components 

and classes supporting the execution of parameter sweep applications in 

console mode. These namespaces define the support for developing and 

controlling parameter sweep applications on top of Aneka. 
 

[05] CO1 L2 

 

3 (a) Differentiate Aneka threads with Common threads 
Answer: 

To efficiently run on a distributed infrastructure, Aneka threads have certain 

limitations compared to local threads. These limitations relate to the communication 

and synchronization strategies that are normally used in multithreaded applications. 

 

Distinction based on Interface compatibility 

The Aneka.Threading.AnekaThread class exposes almost the same interface as the 

System.Threading.Thread class with the exception of a few operations that are not 

supported. The reference namespace that defines all the types referring to the 

support for threading is Aneka.Threading rather than System.Threading.  

 

The basic control operations for local threads such as Start and Abort have a direct 

mapping, whereas operations that involve the temporary interruption of the thread 

execution have not been supported. The reasons for such a design decision are 

twofold. First, the use of the Suspend/Resume operations is generally a deprecated 

practice, even for local threads, since Suspend abruptly interrupts the execution state 

of the thread. Second, thread suspension in a distributed environment leads to an 

ineffective use of the infrastructure, where resources are shared among different 

tenants and applications. This is also the reason that the Sleep operation is not 

supported. Therefore, there is no need to support the Interrupt operation, which 

forcibly resumes the thread from a waiting or a sleeping state. To support 

synchronization among threads, a corresponding implementation of the Join 

operation has been provided. 

 

Besides the basic thread control operations, the most relevant properties have been 

implemented, such as name, unique identifier, and state. Whereas the name can be 

freely assigned, the identifier is generated by Aneka, and it represents a globally 

unique identifier (GUID) in its string form rather than an integer. Properties such as 

IsBackground, Priority, and IsThreadPoolThread have been provided for interface 

compatibility but actually do not have any effect on thread scheduling. Other 

properties concerning the state of the thread, such as IsAlive and IsRunning, exhibit 

the expected behavior, whereas a slightly different behavior has been implemented 

for the ThreadState property that is mapped to the State property. The remaining 

methods of the System.Threading.Thread class (.NET 2.0) are not supported. 

[10] CO3 L2 



 

Finally, it is important to note differences in thread creation. Local threads 

implicitly belong to the hosting process and their range of action is limited by the 

process boundaries. To create local threads it is only necessary to provide a pointer 

to a method to execute in the form of the ThreadStart or ParameterizedThreadStart 

delegates. Aneka threads live in the context of a distributed application, and 

multiple distributed applications can be managed within a single process; for this 

reason, thread creation also requires the specification of the reference to the 

application to which the thread belongs. 

 

Interface compatibility between Aneka threading APIs and the base class library 

allow quick porting of most of the local multithreaded applications to Aneka by 

simply replacing the class names and modifying the thread constructors. 

 

Distinction based on Thread life cycle 

 

Since Aneka threads live and execute in a distributed environment, their life cycle is 

necessarily different from the life cycle of local threads. For this reason, it is not 

possible to directly map the state values of a local thread to those exposed by Aneka 

threads. Figure below provides a comparative view of the two life cycles. 

 

The white balloons in the figure indicate states that do not have a corresponding 

mapping on the other life cycle; the shaded balloons indicate the common states. 

Moreover, in local threads most of the state transitions are controlled by the 

developer, who actually triggers the state transition by invoking methods on the 

thread instance, whereas in Aneka threads, many of the state transitions are 

controlled by the middleware. As depicted in Figure, Aneka threads exhibit more 

states than local threads because Aneka threads support file staging and they are 

scheduled by the middleware, which can queue them for a considerable amount of 

time. As Aneka supports the reservation of nodes for execution of thread related to a 

specific application, an explicit state indicating execution failure due to missing 

reservation credential has been introduced. This occurs when a thread is sent to an 

execution node in a time window where only nodes with specific reservation 

credentials can be executed.  

 

An Aneka thread is initially found in the Unstarted state. Once the Start() method is 

called, the thread transits to the Started state, from which it is possible to move to 

the StagingIn state if there are files to upload for its execution or directly to the 

Queued state. If there is any error while uploading files, the thread fails and it ends 

its execution with the Failed state, which can also be reached for any exception that 

occurred while invoking Start().  

 

Another outcome might be the Rejected state that occurs if the thread is started with 

an invalid reservation token. This is a final state and implies execution failure due to 

lack of rights. Once the thread is in the queue, if there is a free node where to 

execute it, the middleware moves all the object data and depending files to the 

remote node and starts its execution, thus changing the state into Running. If the 

thread generates an exception or does not produce the expected output files, the 

execution is considered failed and the final state of the thread is set to Failed. If the 

execution is successful, the final state is set to Completed. If there are output files to 

retrieve, the thread state is set to StagingOut while files are collected and sent to 

their final destination, and then it transits to Completed. At any point, if the 

developer stops the execution of the application or directly calls the Abort() method, 

the thread is aborted and its final state is set to Aborted. 

 

In most cases, the normal state transition will resemble the one occurring for local 

threads: Unstarted-[Started]-[Queued]-Running-Completed/Aborted/Failed 



 

  

 Distinction based on Thread synchronization 

The .NET base class libraries provide advanced facilities to support thread 

synchronization by the means of monitors, semaphores, reader-writer locks, and 

basic synchronization constructs at the language level. Aneka provides minimal 

support for thread synchronization that is limited to the implementation of the join 

operation for thread abstraction. Most of the constructs and classes that are provided 

by the .NET framework are used to provide controlled access to shared data from 

different threads in order to preserve their integrity. This requirement is less 

stringent in a distributed environment, where there is no shared memory among the 

thread instances and therefore it is not necessary. Moreover, the reason for porting a 

local multithread application to Aneka threads implicitly involves the need for a 

distributed facility in which to execute a large number of threads, which might not 

be executing all at the same time. Providing coordination facilities that introduce 

a locking strategy in such an environment might lead to distributed deadlocks that 

are hard to detect. Therefore, by design Aneka threads do not feature any 

synchronization facility that goes beyond the simple join operation between 

executing threads 

 

   



 

  

Distinction based on Thread Priorities 

The System.Threading.Thread class supports thread priorities, where the scheduling 

priority can be one selected from one of the values of the ThreadPriority 

enumeration: Highest, AboveNormal, Normal, BelowNormal, or Lowest. However, 

operating systems are not required to honor the priority of a thread, and the current 

version of Aneka does not support thread priorities. For interface compatibility 

purposes the Aneka.Threading.Thread class exhibits a Priority property whose type 

is ThreadPriority, but its value is always set to Normal, and changes to it do not 

produce any effect on thread scheduling by the Aneka middleware 

 

Distinction based on Type serialization 

Aneka threads execute in a distributed environment in which the object code in the 

form of libraries and live instances information are moved over the network. This 

condition imposes some limitations that are mostly concerned with the serialization 

of types in the .NET framework. 

 

Local threads execute all within the same address space and share memory; 

therefore, they do not need objects to be copied or transferred into a different 

address space. Aneka threads are distributed and execute on remote computing 

nodes, and this implies that the object code related to the method to be executed 

within a thread needs to be transferred over the network. Since delegates can point 

to instance methods, the state of the enclosing instance needs to be transferred and 

reconstructed on the remote execution environment. This is a particular feature at 

the class level and goes by the term type serialization. 

 

A .NET type is considered serializable if it is possible to convert an instance of the 

type into a binary array containing all the information required to revert it to its 

original form or into a possibly different execution context. This property is 

generally given for several types defined in the .NET framework by simply tagging 

the class definition with the Serializable attribute. If the class exposes a specific set 

of characteristics, the framework will automatically provide facilities to serialize 

and deserialize instances of that type. Alternatively, custom serialization can be 

implemented for any user-defined type. 

 

Aneka threads execute methods defined in serializable types, since it is necessary to 

move the enclosing instance to remote execution method. In most cases, providing 

serialization is as easy as tagging the class definition with the Serializable attribute; 

in other cases, it might be necessary to implement the ISerializable interface and 

provide appropriate constructors for the type. This is not a strong limitation, since 

there are very few cases in which types cannot be defined as serializable. For 

example, local threads, network connections, and streams are not serializable since 

they directly access local resources that cannot be implicitly moved onto a different 

node. 

 

05 CO1 L1 



 4(a)  Distinguish between domain and functional decomposition techniques with 

illustrative examples  
Answer: 

 

Domain Decomposition 

 

Domain decomposition is the process of identifying patterns of functionally repetitive, but 

independent, computation on data. This is the most common type of decomposition in the 

case of throughput computing, and it relates to the identification of repetitive calculations 

required for solving a problem. 

 

When these calculations are identical, only differ from the data they operate on, and can be 

executed in any order, the problem is said to be embarrassingly parallel. Embarrassingly 

parallel problems constitute the easiest case for parallelization because there is no need to 

synchronize different threads that do not share any data. Moreover, coordination and 

communication between threads are minimal; this strongly simplifies the code logic and 

allows a high computing throughput. 

 

In many cases it is possible to devise a general structure for solving such problems and, in 

general, problems that can be parallelized through domain decomposition. The master-slave 

model is a quite common organization for these scenarios: 

• The system is divided into two major code segments. 

• One code segment contains the decomposition and coordination logic. 

• Another code segment contains the repetitive computation to perform. 

• A master thread executes the first code segment. 

• As a result of the master thread execution, as many slave threads as needed are 

created to execute the repetitive computation. 

• The collection of the results from each of the slave threads and an eventual 

composition of the final result are performed by the master thread. 

Although the complexity of the repetitive computation strictly depends on the nature of the 

problem, the coordination and decomposition logic is often quite simple and involves 

identifying the appropriate number of units of work to create. In general, a while or a for 

loop is used to express the decomposition logic, and each iteration generates a new unit of 

work to be assigned to a slave thread. An optimization, of this process involves the use of 

thread pooling to limit the number of threads used to execute repetitive computations. 

Several practical problems fall into this category; in the case of embarrassingly parallel 

problems, we can mention: 

• Geometrical transformation of two (or higher) dimensional data sets 

• Independent and repetitive computations over a domain such as Mandelbrot set and 

Monte Carlo computations 

Even though embarrassingly parallel problems are quite common, they are based on the 

strong assumption that at each of the iterations of the decomposition method, it is possible 

to isolate an independent unit of work. This is what makes it possible to obtain a high 

computing throughput. Such a condition is not met if the values of all the iterations are 

dependent on some of the values obtained in the previous iterations. In this case, the 

problem is said to be inherently sequential, and it is not possible to directly apply the 

methodology described previously. Despite this, it can still be possible to break down the 

whole computation into a set of independent units of work, which might have a different 

granularity—for example, by grouping into single computation-dependent iterations. Figure 

below provides a schematic representation of the decomposition of embarrassingly parallel 

and inherently sequential problems 

10 CO3 L2 

  

 

   



 
To show how domain decomposition can be applied, it is possible to create a simple 

program that performs matrix multiplication using multiple threads. Matrix 

multiplication is a binary operation that takes two matrices and produces another 

matrix as a result. This is obtained as a result of the composition of the linear 

transformation of the original matrices. There are several techniques for performing 

matrix multiplication; among them, the matrix product is the most popular. Figure 

below provides an overview of how a matrix product can be performed. 

 

 
The matrix product computes each element of the resulting matrix as a linear 

combination of the corresponding row and column of the first and second input 

matrices, respectively. The formula that applies for each of the resulting matrix 

elements is the following: 

𝐶𝑖𝑗 = ∑𝐴𝑖𝑘𝐵𝑘𝑗

𝑛−1

𝑘=0

 

Therefore, two conditions hold in order to perform a matrix product: 

• Input matrices must contain values of a comparable nature for which the 

scalar product is defined. 

• The number of columns in the first matrix must match the number of rows of 

the second matrix. 



Given these conditions, the resulting matrix will have the number of rows of the 

first matrix and the number of columns of the second matrix, and each element will 

be computed as described by the preceding equation. 

 

It is evident that the repetitive operation is the computation of each of the elements 

of the resulting matrix. These are subject to the same formula, and the computation 

does not depend on values that have been obtained by the computation of other 

elements of the resulting matrix. Hence, the problem is embarrassingly parallel, and 

we can logically organize the multithreaded program in the following steps: 

• Define a function that performs the computation of the single element of the 

resulting matrix by implementing the previous equation. 

• Create a double for loop (the first index iterates over the rows of the first 

matrix and the second over the columns of the second matrix) that spawns a 

thread to compute the elements of the resulting matrix. 

• Join all the threads for completion and compose the resulting matrix. 

 

Functional Decomposition 

 

Functional decomposition is the process of identifying functionally distinct but 

independent computations. The focus here is on the type of computation rather than 

on the data manipulated by the computation. This kind of decomposition is less 

common and does not lead to the creation of many threads, since the different 

computations that are performed by a single program are limited. 

 

Functional decomposition leads to a natural decomposition of the problem in 

separate units of work because it does not involve partitioning the dataset, but the 

separation among them is clearly defined by distinct logic operations. Figure below 

provides a pictorial view of how decomposition operates and allows parallelization. 

 

 
 

As described by the schematic in the Figure, problems that are subject to functional 

decomposition can also require a composition phase in which the outcomes of each 

of the independent units of work are composed together. In the case of domain 

decomposition, this phase often results in an aggregation process. The way in which 

results are composed in this case strongly depends on the type of operations that 

define the problem. 

 

In the following, we show a very simple example of how a mathematical problem 

can be parallelized using functional decomposition. Suppose, for example, that we 

need to calculate the value of the following function for a given value of 𝑥: 

𝒇(𝒙) = 𝒔𝒊𝒙(𝒙) + 𝒄𝒐𝒔(𝒙) + 𝒕𝒂𝒏(𝒙) 



It is apparent that, once the value of 𝑥 has been set, the three different operations 

can be performed independently of each other. This is an example of functional 

decomposition because the entire problem can be separated into three distinct 

operations. The program computes the sine, cosine, and tangent functions in three 

separate threads and then aggregates the results. 

5(a) Explain work flow with practical example 

Answer: 

 
Workflow applications are characterized by a collection of tasks that exhibit dependencies 

among them. Such dependencies, which are mostly data dependencies (i.e., the output of 

one task is a prerequisite of another task), determine the way in which the applications are 

scheduled as well as where they are scheduled. Concerns in this case are related to 

providing a feasible sequencing of tasks and to optimizing the placement of tasks so that the 

movement of data is minimized. 

 

The term workflow has a long tradition in the business community, where the term is used 

to describe a composition of services that all together accomplish a business process. As 

defined by the Workflow Management Coalition, a workflow is the automation of a 

business process, in whole or part, during which documents, information, or tasks are 

passed from one participant (a resource; human or machine) to another for action, according 

to a set of procedural rules. The concept of workflow as a structured execution of tasks that 

have dependencies on each other has demonstrated itself to be useful for expressing many 

scientific experiments and gave birth to the idea of scientific workflow. Many scientific 

experiments are a combination of problem-solving components, which, connected in a 

order, define the specific nature of the experiment. When such experiments exhibit a natural 

parallelism and need to execute a large number of operations or deal with huge quantities of 

data, it makes sense to execute them on a distributed infrastructure. In the case of scientific 

workflows, the process is identified by an application to run, the elements that are passed 

among participants are mostly tasks and data, and the participants are mostly computing or 

storage nodes. The set of procedural rules is defined by a workflow definition 

scheme that guides the scheduling of the application. A scientific workflow generally 

involves data management, analysis, simulation, and middleware supporting the execution 

of the workflow. 

 

A scientific workflow is generally expressed by a directed acyclic graph (DAG), which 

defines the dependencies among tasks or operations. The nodes on the DAG represent the 

tasks to be executed in a workflow application; the arcs connecting the nodes identify the 

dependencies among tasks and the data paths that connect the tasks. The most common 

dependency that is realized through a DAG is data dependency, which means that the 

output files of a task (or some of them) constitute the input files of another task. This 

dependency is represented as an arc originating from the node that identifies the first task 

and terminating in the node that identifies the second task. 

 

Example 

The DAG in Figure below describes a sample Montage workflow. Montage is a toolkit for 

assembling images into mosaics; it has been specially designed to support astronomers in 

composing the images taken from different telescopes or points of view into a coherent 

image. The toolkit provides several applications for manipulating images and composing 

them together; some of the applications perform background reprojection, perspective 

transformation, and brightness and color correction. The workflow depicted here describes 

the general process for composing a mosaic; the labels on the right describe the different 

tasks that have to be performed to compose a mosaic. In the case presented in the diagram, 

a mosaic is composed of seven images. The entire process can take advantage of a 

distributed infrastructure for its execution, since there are several operations that can be 

performed in parallel. For each of the image files, the following process has to be 

performed: image file transfer, reprojection, calculation of the difference, and common 

plane placement. Therefore, each of the images can be processed in parallel for these tasks. 

Here is where a distributed infrastructure helps in executing workflows. 

 

There might be another reason for executing workflows on a distributed infrastructure: It 

might be convenient to move the computation on a specific node because of data locality 

issues. For example, if an operation needs to access specific resources that are only 

[06] CO2 L2 



available on a specific node, that operation cannot be performed elsewhere, whereas the rest 

of the operations might not have the same requirements. A scientific experiment might 

involve the use of several problem solving components that might require the use of 

specific instrumentation; in this case all the tasks that have these constraints need to be 

executed where the instrumentation is available, thus creating a distributed execution of a 

process that is not parallel in principle. 

 

 
 

5(b) Describe two work flow technologies  

Answer: Any two from 

 

Kepler is an open-source scientific workflow engine built from the collaboration of 

several research projects. The system is based on the Ptolemy II system, which 

provides a solid platform for developing dataflow-oriented workflows. Kepler 

provides a design environment based on the concept of actors, which are reusable 

and independent blocks of computation such as Web services, database calls, and 

the like. The connection between actors is made with ports. An actor consumes data 

from the input ports and writes data/results to the output ports. The novelty of 

Kepler is in its ability to separate the flow of data among components from the 

coordination logic that is used to execute workflow. Thus, for the same workflow, 

Kepler supports different models, such as synchronous and asynchronous models. 

The workflow specification is expressed using a proprietary XML language. 

 

DAGMan (Directed Acyclic Graph Manager), part of the Condor project, 

constitutes an extension to the Condor scheduler to handle job interdependencies. 

Condor finds machines for the execution of programs but does not support the 

scheduling of jobs in a specific sequence. Therefore, DAGMan acts as a 

metascheduler for Condor by submitting the jobs to the scheduler in the appropriate 

order. The input of DAGMan is a simple text file that contains the information 

about the jobs, pointers to their job submission files, and the dependencies among 

jobs.  

 

Cloudbus Workflow Management System (WfMS) is a middleware platform 

built for managing large application workflows on distributed computing platforms 

such as grids and clouds. It comprises software tools that help end users compose, 

schedule, execute, and monitor workflow applications through a Web-based portal. 
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The portal provides the capability of uploading workflows or defining new ones 

with a graphical editor. To execute workflows, WfMS relies on the Gridbus Broker, 

a grid/cloud resource broker that supports the execution of applications with 

quality-ofservice (QoS) attributes over a heterogeneous distributed computing 

infrastructure, including Linux-based clusters, Globus, and Amazon EC2. WfMS 

uses a proprietary XML language for the specification of workflows. 

 

Offspring has a different perspective, which offers a programming-based approach 

to developing workflows. Users can develop strategies and plug them into the 

environment, which will execute them by leveraging a specific distribution engine. 

The advantage provided by Offspring over other solutions is the ability to define 

dynamic workflows. This strategy represents a semi-structured workflow that can 

change its behavior at runtime according to the execution of specific tasks. This 

allows developers to dynamically control the dependencies of tasks at runtime 

rather than statically defining them. Offspring supports integration with any 

distributed computing middleware that can manage a simple bag-of-tasks 

application. It provides a native integration with Aneka and supports a simulated 

distribution engine for testing strategies during development. Because Offspring 

allows the definition of workflows in the form of plug-ins, it does not use any 

XML specification. 
6(a) Explain the importance of computation and communication with respect to the 

design of parallel and distributed applications.  

Answer: 

 

In designing parallel and in general distributed applications, it is very important to 

carefully evaluate the communication patterns among the components that have 

been identified during problem decomposition. The two decomposition methods 

presented in this section and the corresponding sample applications are based on the 

assumption that the computations are independent. This means that:  

• The input values required by one computation do not depend on the output 

values generated by another computation. 

• The different units of work generated as a result of the decomposition do not 

need to interact (i.e., exchange data) with each other. 

These two assumptions strongly simplify the implementation and allow achieving a 

high degree of parallelism and a high throughput. Having all the worker threads 

independent from each other gives the maximum freedom to the operating system 

(or the virtual runtime environment) scheduler in scheduling all the threads. The 

need to exchange data among different threads introduces dependencies among 

them and ultimately can result in introducing performance bottlenecks. For 

example, we did not introduce any queuing technique for threads; but queuing 

threads might potentially constitute a problem for the execution of the application if 

data need to be exchanged with some threads that are still in the queue. A more 

common disadvantage is the fact that while a thread exchanges data with another 

one, it uses synchronization strategy that might lead to blocking the execution of 

other threads. The more data that need to be exchanged, the more they block threads 

for synchronization, thus ultimately impacting the overall throughput. As a general 

rule of thumb, it is important to minimize the amount of data that needs to be 

exchanged while implementing parallel and distributed applications. The lack of 

communication among different threads constitutes the condition leading to the 

highest throughput. 
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6(b) Discuss about POSIX threads  

Answer: 

 

Portable Operating System Interface for Unix (POSIX) is a set of standards 

related to the application programming interfaces for a portable development of 

applications over the Unix operating system flavors. Standard POSIX 1.c (IEEE Std 

1003.1c-1995) addresses the implementation of threads and the functionalities that 
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should be available for application programmers to develop portable multithreaded 

applications. The standards address the Unix-based operating systems, but 

an implementation of the same specification has been provided for Windows-based 

systems. 

 

The POSIX standard defines the following operations: creation of threads with 

attributes, termination of a thread, and waiting for thread completion (join 

operation). In addition to the logical structure of a thread, other abstractions, such as 

semaphores, conditions, reader-writer locks, and others, are introduced in order to 

support proper synchronization among threads. The model proposed by POSIX has 

been taken as a reference for other implementations that 

might provide developers with a different interface but a similar behavior. What is 

important to remember from a programming point of view is the following: 

• A thread identifies a logical sequence of instructions. 

• A thread is mapped to a function that contains the sequence of instructions 

to execute.  

• A thread can be created, terminated, or joined. 

• A thread has a state that determines its current condition, whether it is 

executing, stopped, terminated, waiting for I/O, etc. 

• The sequence of states that the thread undergoes is partly determined by the 

operating system scheduler and partly by the application developers. 

• Threads share the memory of the process, and since they are executed 

concurrently, they need synchronization structures. 

• Different synchronization abstractions are provided to solve different 

synchronization problems. 

• A default implementation of the POSIX 1.c specification has been provided 

for the C language. 

All the available functions and data structures are exposed in the pthread.h header 

file, which is part of the standard C implementations. 

 

 
7(a) Describe the different task-based application models 

Answer: 

 

There are several models based on the concept of the task as the fundamental unit 

for composing distributed applications. What makes these models different from 

one another is the way in which tasks are generated, the relationships they have with 

each other, and the presence of dependencies or other conditions—for example, a 

specific set of services in the runtime environment—that must be met. In this 

section, we quickly review the most common and popular models based on the 

concept of the task. 

 

Embarrassingly parallel applications 

Embarrassingly parallel applications constitute the most simple and intuitive 

category of distributed applications. As we discussed in Chapter 6, embarrassingly 

parallel applications constitute a collection of tasks that are independent from each 

other and that can be executed in any order. The tasks might be of the same type or 

of different types, and they do not need to communicate among themselves. 

 

This category of applications is supported by most of the frameworks for distributed 

computing. Since tasks do not need to communicate, there is a lot of freedom 

regarding the way they are scheduled. Tasks can be executed in any order, and there 

is no specific requirement for tasks to be executed at the same time. Therefore, 

scheduling these applications is simplified and mostly concerned with the optimal 

mapping of tasks to available resources. Frameworks and tools supporting 

embarrassingly parallel applications are the Globus Toolkit, BOINC, and Aneka. 
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There are several problems that can be modeled as embarrassingly parallel. These 

include image and video rendering, evolutionary optimization, and model 

forecasting. In image and video rendering the task is represented by the rendering of 

a pixel (more likely a portion of the image) or a frame, respectively. For 

evolutionary optimization metaheuristics, a task is identified by a single run of the 

algorithm with a given parameter set. The same applies to model forecasting 

applications. In general, scientific applications constitute a considerable source of 

embarrassingly parallel applications, even though they mostly fall into the more 

specific category of parameter sweep applications. 

 

Parameter sweep applications are a specific class of embarrassingly parallel 

applications for which the tasks are identical in their nature and differ only by the 

specific parameters used to execute them. Parameter sweep applications are 

identified by a template task and a set of parameters. The template task defines the 

operations that will be performed on the remote node for the execution of tasks. The 

template task is parametric, and the parameter set identifies the combination of 

variables whose assignments specialize the template task into a specific instance. 

The combination of parameters, together with their range of admissible values, 

identifies the multidimensional domain of the application, and each point in this 

domain identifies a task instance. 

 

Any distributed computing framework that provides support for embarrassingly 

parallel applications can also support the execution of parameter sweep applications, 

since the tasks composing the application can be executed independently of each 

other. The only difference is that the tasks that will be executed are generated by 

iterating over all the possible and admissible combinations of parameters. This 

operation can be performed by frameworks natively or tools that are part of the 

distributed computing middleware. For example, Nimrod/G is natively designed to 

support the execution of parameter sweep applications, and Aneka provides client-

based tools for visually composing a template task, defining parameters, and 

iterating over all the possible combinations of such parameters. 

 

A plethora of applications fall into this category. Mostly they come from the 

scientific computing domain: evolutionary optimization algorithms, weather-

forecasting models, computational fluid dynamics applications, Monte Carlo 

methods, and many others. For example, in the case of evolutionary algorithms it is 

possible to identify the domain of the applications as a combination of the relevant 

parameters of the algorithm. For genetic algorithms these might be the number of 

individuals of the population used by the optimizer and the number of generations 

for which to run the optimizer. 

 

MPI applications 

Message Passing Interface (MPI) is a specification for developing parallel programs 

that communicate by exchanging messages. Compared to earlier models, MPI 

introduces the constraint of communication that involves MPI tasks that need to run 

at the same time. MPI has originated as an attempt to create common ground from 

the several distributed shared memory and message-passing infrastructures available 

for distributed computing. Nowadays, MPI has become a de facto standard for 

developing portable and efficient message-passing HPC applications. Interface 

specifications have been defined and implemented for C/C11 and Fortran. 

 

MPI provides developers with a set of routines that: 

• Manage the distributed environment where MPI programs are executed 

• Provide facilities for point-to-point communication 

• Provide facilities for group communication 

• Provide support for data structure definition and memory allocation 

• Provide basic support for synchronization with blocking calls 

 



7(b) What is data- intensive computing? Describe the open challenges in data-intensive 

computing 

Answer: 

 

Data-intensive computing is concerned with production, manipulation, and analysis 

of large-scale data in the range of hundreds of megabytes (MB) to petabytes (PB) 

and beyond. The term dataset is commonly used to identify a collection of 

information elements that is relevant to one or more applications. Datasets are often 

maintained in repositories, which are infrastructures supporting the storage, 

retrieval, and indexing of large amounts of information. To facilitate the 

classification and search, relevant bits of information, called metadata, are attached 

to datasets. 

 

Data-intensive computations occur in many application domains. Computational 

science is one of the most popular ones. People conducting scientific simulations 

and experiments are often keen to produce, analyze, and process huge volumes of 

data. Hundreds of gigabytes of data are produced every second by telescopes 

mapping the sky; the collection of images of the sky easily reaches the scale of 

petabytes over a year. Bioinformatics applications mine databases that may end up 

containing terabytes of data. Earthquake simulators process a massive amount of 

data, which is produced as a result of recording the vibrations of the Earth across the 

entire globe. 

 

Data-intensive applications not only deal with huge volumes of data but, very often, 

also exhibit compute-intensive properties.  Data-intensive applications handle 

datasets on the scale of multiple terabytes and petabytes. Datasets are commonly 

persisted in several formats and distributed across different locations. Such 

applications process data in multistep analytical pipelines, including transformation 

and fusion stages. The processing requirements scale almost linearly with the data 

size, and they can be easily processed in parallel. They also need efficient 

mechanisms for data management, filtering and fusion, and efficient querying and 

distribution. 

 

Challenges:  

 

1. Scalable algorithms that can search and process massive datasets 

2. New metadata management technologies that can scale to handle complex, 

heterogeneous, and distributed data sources 

3. Advances in high-performance computing platforms aimed at providing a 

better support for accessing in-memory multiterabyte data structures 

4. High-performance, highly reliable, petascale distributed file systems 

5. Data signature-generation techniques for data reduction and rapid processing 

6. New approaches to software mobility for delivering algorithms that are able 

to move the computation to where the data are located 

7. Specialized hybrid interconnection architectures that provide better support 

for filtering multigigabyte datastreams coming from high-speed networks 

and scientific instruments 

8. Flexible and high-performance software integration techniques that facilitate 

the combination of software modules running on different platforms to 

quickly form analytical pipelines 
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