USN					

Internal Assessment Test III – November 2019

Sub:	Advanced Computer Architecture							Sub Code:	15CS72	Branch:	CSE		
Date:	18/11/2019	Dura	tion:	90 min	's	Max Marks:	50	Sem / Sec:	7 th	A,B,C		OE	BE
		·	Α	inswer an	ıy FIVI	E FULL Questi	ons			MA	RKS	СО	RBT
1 (a)	Explain mult	iply pipel	ine des	sign to m	ultiply	two 8-bit integ	gers.			(06)	CO2	L2
1 (b)	Explain the o	concept of	Hazar	d Avoida	ance.					(04)	CO3	L1
2 (a)	What is Arbitration? Explain different types of arbitration. (08)								08)	CO3	L2		
2(b)	Explain the concept of Store and Forward routing.								(02)	CO3	L2	
3 (a)	a) For the reservation table of nonlinear pipeline shown below. 1 2 3 4 5 6 S1 X										08)	CO3	L3
3 (b)	Define follow 1. Latency C	-		Cycle						(02)	CO3	L1

USN					

Internal Assessment Test III – November 2019

	1					1141 1 100			11010111001 20					
Sub:	Advance	d Com	puter A	rchite	cture				Sub Code:	15CS72	Branch:	CSE		
Date:	18/11/2	019	Dura	tion:	90 min's	s i	Max Marks:	50	Sem / Sec:	7 th -2	A,B,C		OE	BE
				A	nswer any	FIVE	FULL Questi	ions			MA	RKS	СО	RBT
1 (a)	Explain r	nultipl	y pipeli				wo 8-bit integ				((06)	CO2	L2
1 (b)	Explain t	he con	cept of	Hazar	d Avoidar	nce.					(04)	CO3	L1
2 (a)	What is Arbitration? Explain different types of arbitration.									((08)	CO3	L2	
2(b)	Explain the concept of Store and Forward routing.								(02)	CO3	L2		
3 (a)	For the re	eservat	ion tabl	e of n	onlinear p	ipeline	shown below	٧.			(08)	CO3	L3
		C1	1 X	2	3 .	4 5	5 6 X							
		S1 S2	Λ	X		٠,	X							
		S3		71	X									
		S4				X								
		S5		X			X							
	a) What are forbidden latencies? Write initial collision vector. b) Draw the state transition diagram c) List all the simple cycles and greedy cycles. d) Determine MAL													
3 (b)	Define for 1. Latence		_		Cycle						((02)	CO3	L1

		MARKS	СО	RBT
4 (a)	Explain any two Context Switching policies.	(02)	CO4	L2
4 (b)	Explain the sequential and weak consistency model with a neat diagram.	(08)	CO3	L2
5 (a)	With a neat diagram explain the architecture of connection machine CM2.	(10)	CO4	L2
6 (a)	What are the implementation models of SIMD? Explain in detail	(10)	CO4	L2
7 (a)	Explain the Concurrent OOP, Actor Model and Parallelism in COOP.	(10)	CO5	L2
8 (a)	Explain different phases of the parallelizing compiler with a neat diagram.	(06)	CO5	L2
8 (b)	Explain the concept of Full Map Directories with neat diagram for Directory based protocol.	(04)	CO4	L2

		MARKS	CO	RBT
4 (a)	Explain any two Context Switching policies.	(02)	CO4	L2
4 (b)	Explain the sequential and weak consistency model with a neat diagram.	(08)	CO3	L2
5 (a)	With a neat diagram explain the architecture of connection machine CM2.	(10)	CO4	L2
6 (a)	What are the implementation models of SIMD? Explain in detail	(10)	CO4	L2
7 (a)	Explain the Concurrent OOP, Actor Model and Parallelism in COOP.	(10)	CO5	L2
8 (a)	Explain different phases of the parallelizing compiler with a neat diagram.	(06)	CO5	L2
8 (b)	Explain the concept of Full Map Directories with neat diagram for Directory based protocol.	(04)	CO4	L2

CO PO Mapping

	Course Outcomes	Modules covered	P01	PO2	PO3	P04	PO5	90d	PO7	PO8	P09	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
CO1	Explain different computer architecture and concepts of parallelism	1,4,5	3	1	1	-	-	1	-	-	-	-	-	-	-	2	-	-
CO2	Compare major processor families and pipeline implementations.	2,3	3	1	1	-	-	1	-	-	-	-	-	-	-	2	-	-
CO3	Describe the hardware technologies of computer system along with complete understanding of the memory and memory hierarchy.	2,3	3	1	1	-	_	1	-	-	-	_	-	-	-	2	-	-
CO4	Explain the concepts of parallel and scalable architecture.	1,4	3	1	1	-	-	1	-	-	-	-	-	-	-	2	-	-
CO5	Describe about parallel programming models, languages, compilers and Instruction and System Level parallelism	1,5	3	1	1	_	-	1	-	-	-	_	_	-	-	2	_	-

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

	PROGRAM OUTCOMES (PO), PRO	PECIFIC OUTCOMES (PSO)	CORRELATION LEVELS						
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation				
PO2	Problem analysis	PO8	Ethics	1	Slight/Low				
PO3	Design/development of solutions	gn/development of solutions PO9 Individual and team work							
PO4	Conduct investigations of complex problems	PO10	Communication	3	Substantial/ High				
PO5	Modern tool usage	PO11	Project management and finance						
PO6	The Engineer and society	PO12	Life-long learning						
PSO1	Develop applications using different stace	cks of web	and programming technologies						
PSO2	Design and develop secure, parallel, dis	tributed, n	etworked, and digital systems						
PSO3	Apply software engineering methods to	design, dev	velop, test and manage software systems.						
PSO4	PSO4 Develop intelligent applications for business and industry								