INTERNAL ASSESSMENT TEST 3 – NOVEMBER 2019 ## **SCHEME AND SOLUTIONS** | 3. | Explain the different ways of implementing three site remote replication. | [10] | CO3 | L2 | |----|--|------|-----|-----------| | | Replica is created at remote site · Addresses risk associated with regionally driven outages · Could be a few miles away or half way around the globe □ Modes of remote replication (based on RPO requirement) · Synchronous Replication · Asynchronous Replication | | | | | | Synchronous Replication | | | | | | A write must be committed to the source and remote replica before it is acknowledged to the host Ensures source and remote replica have identical data at all times Write ordering is maintained Replica receives writes in exactly the same order as the source Synchronous replication provides the lowest RPO and RTO Goal is zero RPO RTO is as small as the time it takes to start application on the target site | | | | | | Asynchronous Replication | | | | | | Write is committed to the source and immediately acknowledged to the host Data is buffered at the source and transmitted to the remote site later Some vendors maintain write ordering Other vendors do not maintain write ordering, but ensure that the replica will always be a consistent re-startable image Finite RPO Replica will be behind the source by a finite amount Typically configurable | | | | | 4. | Discuss in detail the different cloud deployment models and service models Cloud computing is shared pools of configurable computer system resources and higher-level services that can be rapidly provisioned with minimal management effort, often over the Internet. Cloud computing relies | [10] | CO4 | L1,
L2 | | | on sharing of resources to achieve coherence and economies of scale, similar to a public utility. Private Public Hybird | | | | | 5. | Explain in detail in-band and out-of-band virtualization with neat diagrams. | [10] | CO4 | L2 | |----|--|------|-----|----| The in-band architecture is the least intrusive from the standpoint of the | | | | | | server. Instead of discovering and attaching to multiple storage targets across | | | | | | the SAN, the server now sees only a single large storage resource in its path, | | | | | | represented by the virtualization appliance. The in-band virtualization engine manages the disparate physical storage | | | | | | devices in the downstream SAN and presents a coherent image of metadata to | | | | | | the server. | | | | | | The out-of-band architecture avoids in-band issues by placing metadata | | | | | | control outside the data transport path. Individual servers, however, must have | | | | | | virtualization software agents installed so that I/O requests can be redirected | | | |