

Sub: Database Management Systems
Sub Code:

17CS53

Date: 19/11/19 Duration: 90 mins Max Marks: 50
Sem /Sec:

V A,B,C OBE

 Answer any FIVE FULL QUESTIONS
CO RBT

1

a

What do you mean by multivalued dependency?

Describe 4NF with example.

ANSWER:

 MULTIVALUED DEPENDENCY (MVD) AND FOURTH NORMAL FORM

 Multivalued dependencies are a consequence of first normal form (1NF), which

disallows an attribute in a tuple to have a set of values, and the accompanying process

of converting an unnormalized relation into 1NF.

 If we have two or more multivalued independent attributes in the same relation

schema, we get into a problem of having to repeat every value of one of the attributes

with every value of the other attribute to keep the relation state consistent and to

maintain the independence among the attributes involved. This constraint is specified

by a multivalued dependency.

Formal Definition of Multivalued Dependency

A multivalued dependency specified on relation schema R, where X and Y are both

subsets of R, specifies the following constraint on any relation state r of R: If two tuples t1

and t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should also exist in r

with the following properties, where we use Z to denote (R – (X ∪ Y)):

t3[X] = t4[X] = t1[X] = t2[X].

t3[Y] = t1[Y] and t4[Y] = t2[Y].

t3[Z] = t2[Z] and t4[Z] = t1[Z].

Whenever X →→ Y holds, we say that X multidetermines Y. Because of the symmetry in the

definition, whenever X →→ Y holds in R, so does X →→ Z. Hence, X →→ Y implies X →→ Z

and therefore it is sometimes written as X →→ Y|Z.

An MVD X →→ Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X ∪ Y = R. An

MVD that satisfies neither (a) nor (b) is called a nontrivial MVD

Definition of 4NF: A relation schema R is in 4NF with respect to a set of dependencies F

(that includes functional dependencies and multivalued dependencies) if, for every

nontrivial multivalued dependency X→→ Y in F+ X is a superkey for R.

In the EMP relation of Figure(A),the values ‘X’ and ‘Y’ of Pname are repeated with each

value of Dname (or, by symmetry, the values ‘John’ and ‘Anna’ of Dname are repeated

with each value of Pname).

In EMP relation of figure (C), not every Sname determines various Part_name and not

every Sname determines multiple Proj_name. so it is not MVD. Therefore it is in 4NF.

Fourth Normal Form:

(a) The EMP relation with two MVDs Ename->> Pname and Ename->> Dname

(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and

EMP_DEPARTMENTS

CO4

L2

(A) EMP

Ename Pname Dname

Smith X John

Smith Y Anna

Smith X Anna

Smith Y John

EMP_PROJECTS

Ename Pname

Smith X

Smith Y

EMP_DEPENDENTS

Ename Dname

Smith John

Smith Anna

Decomposing a relation state of EMP that is not in 4NF,(a) EMP relation with

additional tuples.(b)Two corresponding 4NF relationsEMP_PROJECTS and

EMP_DEPENDENTS.

(B) EMP

ENAME PNAME DNAME

SMITH X JOHN

SMITH Y ANNA

SMITH X ANNA

SMITH Y JOHN

BROWN W JIM

BROWN X JIM

BROWN Y JIM

BROWN Z JIM

BROWN W JOAN

BROWN X JOAN

BROWN Y JOAN

BROWN Z JOAN

BROWN W BOB

BROWN X BOB

BROWN Y BOB

BROWN Z BOB

(B)EMP_PROJECTS

ENAME PNAME

SMITH X

SMITH Y

BROWN W

BROWN X

BROWN Y

BROWN Z

EMP_DEPENDENTS

ENAME DNAME

SMITH ANNA

SMITH JOHN

BROWN JIM

BROWN JOAN

BROWN BOB

1

b

Draw state transition diagram of a transaction. Explain different states of a

transaction.

ANSWER:

Active State

A transaction is a sequence of operations. If a transaction is in execution then it is said to

be in active state. It doesn’t matter which step is in execution, until unless the transaction

is executing, it remains in active state.

Failed State

If a transaction is executing and a failure occurs, either a hardware failure or a software

failure then the transaction goes into failed state from the active state.

Partially Committed State
A transaction goes into “partially committed” state from the active state when there are

read and write operations present in the transaction.

A transaction contains number of read and write operations. Once the whole transaction

is successfully executed, the transaction goes into partially committed state where we

have all the read and write operations performed on the main memory (local memory)

instead of the actual database.

A transaction can fail during execution so if we are making the changes in the actual

database instead of local memory, database may be left in an inconsistent state in case of

any failure. This state helps us to rollback the changes made to the database in case of a

failure during execution.

Committed State

If a transaction completes the execution successfully then all the changes made in the

local memory during partially committed state are permanently stored in the database.

You can also see in the above diagram that a transaction goes from partially committed

state to committed state when everything is successful.

Aborted State
If a transaction fails during execution then the transaction goes into a failed state. The

changes made into the local memory (or buffer) are rolled back to the previous

consistent state and the transaction goes into aborted state from the failed state.

Terminated state

The terminated state corresponds to the transaction leaving the system. The transaction

information that is maintained in system tables while the transaction has been running is

removed when the transaction terminates.

CO4

L1

2

a

2

b

3

b

Define Minimal cover. Write an algorithm for finding a minimal cover G for

a set of functional dependencies F.

ANSWER:

Minimal Sets of Functional Dependencies:

A minimal cover of a set of functional dependencies E is a set of functional

dependencies F that satisfies the property that every dependency in E is in the closure

F+ of F.

This property is lost if any dependency from the set F is removed; F must have no

redundancies in it, and the dependencies in E are in a standard form.

To satisfy these properties, we can formally define a set of functional dependencies F to be

minimal if it satisfies the following conditions:

a) Every dependency in F has a single attribute for its right-hand side.

b) We cannot replace any dependency X → A in F with a dependency Y → A, where

Y is a proper subset of X, and still have a set of dependencies that is equivalent to

F.

c) We cannot remove any dependency from F and still have a set of dependencies

that is equivalent to F.

A minimal cover of a set of functional dependencies E is a minimal set of dependencies F that

is equivalent to E. There can be several minimal covers for a set of functional dependencies.

Algorithm : Finding a Minimal Cover F for a Set of Functional Dependencies E

1. Set F := E.

2. Replace each functional dependency X → {A1, A2, ..., An} in F by the n

functional dependencies X → A1, X → A2, ..., X → An.

3. For each functional dependency X → A in F

 for each attribute B that is an element of X

 if {{F - {X → A} } U {(X - {B}) → A} } is equivalent to F,

then replace X → A with (X - {B}) → A in F.

4. For each

 remaining functional dependency

X → A in F if { F - {X → A} } is equivalent to

F,then remove X → A from F.

A relation R (A, C, D, E, H) satisfies the following

FDs. A→C AC→D E→AD E→H. Find the

canonical cover for this set of FDs.

Given below two sets of FDs for a relation R (A, B, C, D, E). Are they

equivalent?

i) A→B AB→C D→AC D→E

ii)A→BC D→AE

CO4

L1

2

b

CO4

L3

CO4

L3

5

CO4 L3

6

 L3

3

A

Discuss the properties of a Transaction.

ANSWER:

Consider a transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Atomicity requirement

If the transaction fails after step 3 and before step 6, money will be “lost” leading to an

inconsistent database state

 Failure could be due to software or hardware

The system should ensure that updates of a partially executed transaction are not reflected in the

database

Durability requirement — once the user has been notified that the transaction has completed

(i.e., the transfer of the $50 has taken place), the updates to the database by the transaction must

persist even if there are software or hardware failures.

Consistency requirement in above example:

The sum of A and B is unchanged by the execution of the transaction

In general, consistency requirements include

 Explicitly specified integrity constraints such as primary keys and foreign

keys

 Implicit integrity constraints

e.g., sum of balances of all accounts, minus sum of loan amounts must equal value of cash-in-

hand

A transaction, when starting to execute, must see a consistent database.

During transaction execution the database may be temporarily inconsistent.

When the transaction completes successfully the database must be consistent

Erroneous transaction logic can lead to inconsistency

A transaction is a unit of program execution that accesses and possibly updates various data

items. To preserve the integrity of data the database system must ensure

Atomicity. Either all operations of the transaction are properly reflected in the database

or none are.

Consistency. Execution of a transaction in isolation preserves the consistency of the

database.

Isolation. Although multiple transactions may execute concurrently, each transaction

must be unaware of other concurrently executing transactions. Intermediate transaction

results must be hidden from other concurrently executed transactions.

 That is, for every pair of transactions Ti and Tj, it appears to Ti that either Tj, finished

CO4

L2

4

execution before Ti started, or Tj started execution after Ti finished.

Durability. After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

What are the anomalies that can occur due to concurrent execution of transactions?

Explain them with example.

Database inconsistencies can occur when more than one transaction is working concurrently on

the same objects. In the space of time between when objects are read and then written, the same

objects can be read from the database and even manipulated by other transactions. This leads to

concurrency anomalies. Depending on the kind of operations and the order in which they are

executed, various kinds of concurrency anomalies can occur. The following lists some typical

examples.

1.Lost Update Problem

This problem occurs when two transactions that access the same database items have their

operations interleaved in a way that makes the value of some database items incorrect. Suppose

that transactions T1 and T2 are submitted at approximately the same time, and suppose that their

operations are interleaved as shown in below figure.Then the final value of item X is incorrect

because T2 reads the value of X before T1 changes it in the database, and hence the updated

value resulting from T1 is lost. For example, if X = 80 at the start (originally there were 80

reservations on the flight), N = 5 (T1 transfers 5 seat reservations from the flight corresponding

to X to the flight corresponding to Y), and M = 4 (T2 reserves 4 seats on X), the final result

should be X = 79. However, in the interleaving of operations shown in the example, it is X = 84

because the update in T1 that removed the five seats from X was lost.

2. The Temporary Update (or Dirty Read) Problem.

This problem occurs when one transaction updates a database item and then the transaction fails

for some reason . Meanwhile, the updated item is accessed (read) by another transaction before

it is changed back (or rolled back) to its original value. Below given example shows where T1

updates item X and then fails before completion, so the system must roll back X to its original

value. Before it can do so, however, transaction T2 reads the temporary value of X, which will

not be recorded permanently in the database because of the failure of T1. The value of item X

that is read by T2 is called dirty data because it has been created by a transaction that has not

completed and committed yet; hence, this problem is also known as the dirty read problem.

CO4

L1

Non-repeatable Read

A non-repeatable read occurs when a object is read twice within a transaction; and between the

reads, it is modified by another transaction, therefore, the second read returns different values as

compared to the first; i.e., the read operation is non-repeatable. Open Access ORM uses in-

memory copies of database objects. Once an object is loaded into memory, there is no need to

fetch it from the database each time a member is accessed. A new read operation, and therefore

a non-repeatable read, could only occur when an application explicitly refreshes an object. This

depends on the backend and/or its configuration (e.g., if it is a "versioning" database that

maintains multiple versions of a row for concurrently running transactions)

This problem occurs when a transaction gets to read unrepeated i.e. different values of the same

variable in its different read operations even when it has not updated its value.

 Example-

Here,

1. T1 reads the value of X (= 10 say).

2. T2 reads the value of X (= 10).

3. T1 updates the value of X (from 10 to 15 say) in the buffer.

4. T2 again reads the value of X (but = 15).

In this example,

 T2 gets to read a different value of X in its second reading.

 T2 wonders how the value of X got changed because according to it, it is running in isolation.

Inconsistent Retrievals Problem

o Inconsistent Retrievals Problem is also known as unrepeatable read. When a transaction

calculates some summary function over a set of data while the other transactions are

updating the data, then the Inconsistent Retrievals Problem occurs.

o A transaction T1 reads a record and then does some other processing during which the

transaction T2 updates the record. Now when the transaction T1 reads the record, then

the new value will be inconsistent with the previous value.

Example:

Suppose two transactions operate on three accounts.

Transaction-X is doing the sum of all balance while transaction-Y is transferring an amount 50

from Account-1 to Account-3.

o Here, transaction-X produces the result of 550 which is incorrect. If we write this

produced result in the database, the database will become an inconsistent state because

the actual sum is 600.

o Here, transaction-X has seen an inconsistent state of the database.

Phantom Read

Phantom reads are of a totally different nature than the anomalies introduced previously. They

can occur when a transaction defines a subset of data items that the transaction wants to work

with; e.g., by performing a query and obtaining a query result. At this point, it is possible that

data items are concurrently changed by another transaction so that they no longer qualify for

inclusion in the query result, or vice versa. The same applies to objects that are inserted or

deleted. This problem occurs when a transaction reads some variable from the buffer and when

it reads the same variable later, it finds that the variable does not exist.

 Example-

 Here,

1. T1 reads X.

2. T2 reads X.

3. T1 deletes X.

4. T2 tries reading X but does not find it.

 In this example,

 T2 finds that there does not exist any variable X when it tries reading X again.

 T2 wonders who deleted the variable X because according to it, it is running in isolation.

The Incorrect Summary Problem.

 If one transaction is calculating an aggregate summary function on a number of database items

while other transactions are updating some of these items, the aggregate function may calculate

some values before they are updated and others after they are updated. For example, suppose

that a transaction T3 is calculating the total number of reservations on all the flights; meanwhile,

transaction T1 is executing. If the interleaving of operations shown in the result of T3 will be off

by an amount N because T3 reads the value of X after N seats have been subtracted from it but

reads the value of Y before those N seats have been added to it.

