(B VEARS &

§\\% ;:MRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

&7
()

» CELEgg,

Internal Assessment III — Nov 2019
Scheme and Solutions

Sub: | Advanced Java & J2EE o 117CS553 |Branch: | ISE
Date: | 18-11-2019 |Duration: | 90 min’s Max |5, | Sem/y OBE
Marks: Sec:

Q.1 Explain the following legacy classes with an example i) Hashtable ii) Vector

Java.util.Vector Class in Java

The Vector class implements a growable array of objects. Vectors basically fall in legacy classes
but now it is fully compatible with collections.

e Vector implements a dynamic array that means it can grow or shrink as required. Like an
array, it contains components that can be accessed using an integer index

o They are very similar to ArrayList but Vector is synchronised and have some legacy
method which collection framework does not contain.

Constructor:

e Vector(): Creates a default vector of initial capacity is 10.

o Vector(int size): Creates a vector whose initial capacity is specified by size.

o Vector(int size, int incr): Creates a vector whose initial capacity is specified by size and
increment is specified by incr. It specifies the number of elements to allocate each time
that a vector is resized upward.

¢ Vector(Collection c¢): Creates a vector that contains the elements of collection c.

// Demonstrate various Vector operations.
import java.util.#;

class VectorDemo {
public static void wmain(String args[]) |

J/ initial size is 3, increment is 2

Vector<Integer> v = new Vector<Integer>(3, 2);

System.out.println{"Initial size: " + w.sizel(});
System.cut.println{"Initial capacity: " +
v.capacity());

.addElement (1) ;
.addElement (2] ;
.addElement (3] ;
.addElement (4] ;

4 < a4

System.cut.println({"Capacity after four additions:
wv.capacity()};

v.addElement (5} ;

System.cut.println{"Current capacity:
v.capacity(}};

" +

e

The output from this program is shown here:

Initial size: 0

Initial capacity: 3

Capacity after four additions: &
Current capacity: &

Hash Table

Hashtable

Hashtable was part of the original java.util and is a concrete implementation of a Dictionary.
However, with the advent of collections, Hashtable was reengineered to also implement the
Map interface. Thus, Hashtable is now integrated into the Collections Framework. It is similar
to HashMap, but is synchronized.

The Hashtable constructors are shown here:

Hashtable()

Hashtable(int size)

Hashtable(int size, float fillRatio)
Hashtable(Map<? extends K, ? extends V> m)

// Demonstrate a Hashtable.
import java.util.#;

class HTDemo |
public static wvoid main(String args[]) {
Hashtable<String, Double> balance =
new Hashtable<String, Doubles|();

Enumeration<String> names;

String str;
double bal;
balance.put ("John Doe", 3434.34);
balance.put ("Tom Smith", 123.22);
balance.put ("Jane Baker", 1378.00);
balance.put ("Tod Hall", 99.22);
balance.put ("Ralph Smith", -19.08);
J/ Show all balances in hashtable.
names = balance.keys(];

while {names.hasMoreElements{)) {
str = names.nextElement () ;
System.out.printinistr + ": " +

balance.get (str));

Q. 2 Demonstrate the linked list for the collections with an example.

The LinkedList Class

The LinkedList class extends AbstractSequentialList and implements the List, Deque, and
Queue interfaces. It provides a linked-list data structure. LinkedList is a generic class that

has this declaration:

class LinkedList<E=

Here, E specifies the type of objects that the list will hold. LinkedList has the two constructors

shown here:

LinkedList{)

LinkedList{Collection<? extends E> ¢)

J// Demonstrate LinkedList.
import java.util.*;

class LinkedListDemo {
public static void main(String args[]l}) {
S/ Create a linked list.
LinkedList<String> 11 = new LinkedList«<String=(];

S/ Bdd elements to the linked list.
11.add("F");

11.add("B") ;

11.add{"D") ;

11.add{"E") ;

11.add("c");

11 .addLast ("Z") ;

11 .addFirst ("A") ;

11.add(1, "Az");
System.out.println{"Original contents of 11: " + 11);

JJ/ Remove elements from the linked list.
11 .remove ("F") ;
11.remove (2) ;

System.ocut.println({"Contents of 11 after deleticon: "
+ 11);

S/ Remove first and last elements.
11 .removeFirst () ;
11 .removelLast () ;

System.out.println{"1l after deleting first and last: "
+ 11);

J/ Get and set a value.

String val = 1l.get(2};
11.set ({2, wal + " Changed"};

System.out.println{"ll after change: " + 11);

}
}

The output from this program is shown here:

Original contents of 11: [A, B2, F, B, D, E, C,
Contents of 11 after deletion: [A, A2, D, E, C,
11 after deleting first and last: [A2, D, E, C]
11 after change: [AZ2, D, E Changed, C]

Q. 3 Explain how collections can be accessed using an Iterator.

Accessing a Collection via an Iterator

Often, you will want to cycle through the elements in a collection. For example, you might
want to display each element. One way to do this is to employ an iterator, which is an object
that implements either the Iterator or the ListIterator interface. Iterator enables you to cycle
through a collection, obtaining or removing elements. ListIterator extends Iterator to allow

// Demonstrate iterators.
import java.util.¥;

class IteratorDemo |
public static woid main(String args[]} {
// Create an array list.
ArrayList<String> al = new ArrayList<Strings();

// Add elements to the array list.
al.add{"C")};
al .add("&") ;
al .add("E")} ;

al.add("B") ;
al.add("D") ;
al.add("F") ;

// Use iterator to display contents of al.
System.out.print ("Original contents of al: "};
Iterator<String> itr = al.iterator();
while (itr.hasNext ()} {
String element = itr.next();
System.out.print{element + " "};

}

System.out.println() ;

// Modify cbjects being iterated.
ListTterator«<String= 1litr = al.listIterator(};

while (litr.hasNext{)) {
String element = litr.nmext();
litr.set (element + "+");
}
System.out.print ("Modified contents of al: "};

itr = al.iteratori);
while (itr.hasNext ()} {

String element = itr.next();
System.out.print{element + " ");

}

System.out.println();

// Wow, display the list backwards.
System.out.print ("Modified list backwards: "};
while {litr.hasPreviocusi()) |
String element = litr.previous();
System.out.print{element + " ");

}

System.out.println{};

}
}

The output is shown here:

Original contents of al: CAEBUDF
Modified contents of al: C+ A+ E+ B+ D+ F+
Modified list backwards: F+ D+ B+ E+ L+ C+

Q. 4 Explain the Constructors of TreeSet class and write a Java program to create a TreeSet
Collection and access it via Iterator.

The TreeSet Class

TreeSet extends AbstractSet and implements the NavigableSet interface. It creates a
collection that uses a tree for storage. Objects are stored in sorted, ascending order. Access
and retrieval times are quite fast, which makes TreeSet an excellent choice when storing large
amounts of sorted information that must be found quickly.

TreeSet is a generic class that has this declaration:

class TreeSet<E>

Here, E specifies the type of objects that the set will hold.
TreeSet has the following constructors:

TreeSet
TreeSet
TreeSet
TreeSet

)
Collection=? extends E> ¢)
Comparator<? super E> comp)

SortedSet<E= ss5)

.

The first form constructs an empty tree set that will be sorted in ascending order according
to the natural order of its elements. The second form builds a tree set that contains the elements
of ¢. The third form constructs an empty tree set that will be sorted according to the comparator
specified by comp. (Comparators are described later in this chapter.) The fourth form builds
a tree set that contains the elements of ss.

import java.util.*;
import java.util. TreeSet;

public class TreeSetDemo {
public static void main(String args[])
{
/l Creating an empty TreeSet
TreeSet<String> set = new TreeSet<String>();

// Use add() method to add elements into the Set
set.add("Welcome");

set.add("To");

set.add("Geeks");

set.add("4");

set.add("Geeks");

// Displaying the TreeSet
System.out.println("TreeSet: " + set);

// Creating an iterator
Iterator value = set.iterator();

// Displaying the values after iterating through the set

System.out.println("The iterator values are: ");

while (value.hasNext()) {
System.out.println(value.next());

}
}
}
import java.util.*;
import java.util. TreeSet;

public class TreeSetDemo {
public static void main(String args[])
{
// Creating an empty TreeSet
TreeSet<String> set = new TreeSet<String>();

// Use add() method to add elements into the Set
set.add("Welcome");

set.add("To");

set.add("Geeks");

set.add("4");

set.add("Geeks");

// Displaying the TreeSet
System.out.println("TreeSet: " + set);

/l Creating an iterator
Iterator value = set.iterator();

// Displaying the values after iterating through the set

System.out.println("The iterator values are: ");

while (value.hasNext()) {
System.out.println(value.next());

}
}
}

Output:

TreeSet: [4, Geeks, To, Welcome]
The iterator values are:

4

Geeks

To

Welcome

Q. 5 a) What is Servlet? Explain the lifecycle of a servlet

The Life Cycle of a Serviet

Three methods are central to the life cycle of a servlet. These are init(), service(), and destroy{).
They are implemented by every servlet and are invoked at specific times by the server. Let
us consider a typical user scenario to understand when these methods are called.

First, assume that a user enters a Uniform Resource Locator (URL) to a web browser.
The browser then generates an HTTP request for this URL. This request is then sent to the
appropriate server.

Second, this HTTP request is received by the web server. The server maps this request to
a particular servlet. The servlet is dynamically retrieved and loaded into the address space
of the server.

Third, the server invokes the init() method of the servlet. This method is invoked only
when the servlet is first loaded into memory. It is possible to pass initialization parameters
to the servlet so it may configure itself.

Fourth, the server invokes the service() method of the servlet. This method is called to
process the HT TP request. You will see that it is possible for the servlet to read data that has
been provided in the HTTP request. It may also formulate an HTTP response for the client.

The servlet remains in the server's address space and is available to process any other
HTTP requests received from clients. The service() method is called for each HTTP request.

Finally, the server may decide to unload the servlet from its memory. The algorithms by
which this determination is made are specific to each server. The server calls the destroy()
method to relinquish any resources such as file handles that are allocated for the servlet.
Important data may be saved to a persistent store. The memory allocated for the servlet and
its objects can then be garbage collected.

Q. 5b) Write a short note on HTTP request and response.

Handling HTTP Requests and Responses

The HttpServlet class provides specialized methods that handle the various types of HTTP
requests. A servlet developer typically overrides one of these methods. These methods are
doDeletel), doGet{), doHead(), doOptions(), doPost(), doPut{), and doTrace(). A complete
description of the different types of HTTP requests is beyond the scope of this book. However,
the GET and POST requests are commonly used when handling form input. Therefore, this
section presents examples of these cases.

Handling HTTP GET Requests

Here we will develop a servlet that handles an HTTP GET request. The servlet is invoked when
a form on a web page is submitted. The example contains two files. A web page is defined
in ColorGet.htm, and a servlet is defined in ColorGetServlet.java. The HTML source code
for ColorGet.htm is shown in the following listing. It defines a form that contains a select
element and a submit button. Notice that the action parameter of the form tag specifies a URL.
The URL identifies a servlet to process the HTTP GET request.

<html>

<body=>

ccenters

<form name="Forml"”
action="http://localhost:B080/servlets-examples/servliet/ColorGetServiet”

«B=Color:</B=

«select name="color" size="1"=

<option walue="Red":Red</options
<ocption value="Green"-Green</opticn=
<option value="Blue">Blue</options>

< faelect=

=br=

<input type=submit value="Submit"=
</ form=

< /body=

</html=

The source code for ColorGetServlet.java is shown in the following listing. The doGet()
method is overridden to process any HTTP GET requests that are sent to this servlet. It uses
the getParameter() method of HttpServletRequest to obtain the selection that was made
by the user. A response is then formulated.

import java.io.*;
import javax.servlet.¥;
import javax.servlet.http.*;

public class Color3etServlet extends HttpServlet {

public wvoid doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException |

String color = request.getParameter("color");
response.setContentType ("text/html "} ;
PrintWriter pw = response.getWriter();

pw.println{"The selected color is: "};
pw.printlnicolor) ;
pw.closel);

Q. 6 What is Cookie? List out methods defined by cookie. Write a Java program to add a cookie

Cookies are small files which are stored on a user's computer. They are designed to hold a
modest amount of data specific to a particular client and website, and can be accessed either by
the web server or the client computer. This allows the server to deliver a page tailored to a
particular user, or the page itself can contain some script which is aware of the data in the cookie
and so is able to carry information from one visit to the website (or related site) to the next.

There are given some commonly used methods of the Cookie class.

Method Description
p Ub.hc void setMax Age(int Sets the maximum age of the cookie in seconds.
expiry)
Returns the name of the cookie. The name cannot be changed

public String getName() after creation

public String getValue() Returns the value of the cookie.

public void setName(String

changes the name of the cookie.
name)

public void setValue(String

changes the value of the cookie.
value)

Other methods required for using Cookies

For adding cookie or getting the value from the cookie, we need some methods provided by
other interfaces. They are:

1. public void addCookie(Cookie ck):method of HttpServletResponse interface is used to
add cookie in response object.

2. public Cookie[] getCookies():method of HttpServletRequest interface is used to return
all the cookies from the browser.

The HTML source code for AddCookie.htm is shown in the following listing. This page
contains a text field in which a value can be entered. There is also a submit button on the

page. When this button is pressed, the value in the text field is sent to AddCookieServlet
via an HTTP POST request.

<html=
<body=>
<Centers
=form name="Forml"
method="post"
action="http://localhost:B080/servlets-examples/servlet /AddCookieServiet">
Enter a wvalue for MyCockie:</B=
<input type=textbox name="data" size=25 value=""=>
<input type=submit walue="Submit"=
< /form=
< /body=>
< /html =

The source code for AddCookieServlet.java is shown in the following listing. It gets the
value of the parameter named “data”. It then creates a Cookie object that has the name
“MyCookie” and contains the value of the “data” parameter. The cookie is then added to
the header of the HTTP response via the addCookiel) method. A feedback message is then
written to the browser.

import java.io.*;
import javax.servlet.#;
import javax.servlet.http.#*;

public class AddCookieServlet extends HttpServlet |

public wvoid doPost (HttpServletReguest reguest,

HttpServletResponse response)
throws ServletBException, I0OException |

// Get parameter from HTTP request.
String data = request.getParameter ("data");

J/ Create cookie.
Cockie cookie = new Cockie ("MyCookie®, data);

// RBdd cookie to HTTP response.
response . addCookie (cockie) ;

// Write output to browser.

response . setContentType ("text /html ") ;
PrintWriter pw = response.getWriter();
pw.println{"<BsMyCockie has been set to"};
pw.println{data);

pw.closel() ;

Q. 7 Demonstrate how servlet can accept parameters from HTML

Reading Serviet Parameters

The ServletRequest interface includes methods that allow you to read the names and values
of parameters that are included in a client request. We will develop a servlet that illustrates
their use. The example contains two files. A web page is defined in PostParameters.htm, and
a servlet is defined in PostParametersServlet.java.

The HTML source code for PostParameters.htm is shown in the following listing, It defines
a table that contains two labels and two text fields. One of the labels is Employee and the
other is Phone. There is also a submit button. Notice that the action parameter of the form
tag specifies a URL. The URL identifies the servlet to process the HT TP POST request.

<html=>
<body=>
ecenter=
<form name="Forml"
method="post"
action="http://localhost:8080/servliets-examples/
servlet/PostParametersServiet"s
ctablex>
<tr>
<td><B=Employee</td>
«td>einput type-textbox name="e" size="25" value=""></td>
</tr=
<tr>
«td>Phone«/td>
<td=<input type=textbox name="p" size="25" wvalue=""=</td>
<ftr>
</table=

<input type=submit value="Submit"s
< /body=
< /html =

The source code for PostParametersServlet.java is shown in the following listing. T
servicel) method is overridden to process client requests. The getParameterNames() me
returns an enumeration of the parameter names. These are processed in a loop. You can
that the parameter name and value are output to the client. The parameter value is obtz
via the getParameter() method.

import java.lio.*;
import java.util.#*;
import javax.servlet.*;

public class PostParametersServlet
extends GenericServilet |

public wvoid service (ServletRegquest request,
ServletResponse response)

throws ServletException, IOException {

J// Get print writer.
PrintWriter pw = response.getWriter();

J// Get enumeraticn of parameter names.
Enumeration e = request.getParameterNames();

J// Display parameter names and wvalues.

while ({e.hasMoreElements()) |
String pname = (Stringle.nextElement();
pvw.print (pname + " = ") ;

String pvalue = reguest.getParamster (pname) ;
pPw.println (pvalue) ;

pw.closel) ;

Q. 8 Define JSP. Explain different types of JSP tags by taking suitable example

Java Server Pages (JSP) is a server-side programming technology that enables the creation of
dynamic, platform-independent method for building Web-based applications. JSP have access to
the entire family of Java APIs, including the JDBC API to access enterprise databases

Tags

1. 1. Directives

These types of tags are used primarily to import packages. Altenatively you can also use these
tags to define error handling pages and for session information of JSP page.

1.Code:

<% @page language="java" %>

2.Code:

<% @page language="java" session="true" %>

2. Declarations

JSP declarations starts with '<%!" and ends with '%>'". In this you can make declarions such as int
1 =1, double pi1 = 3.1415 etc. If needed, you can also write Java code inside declarations.

Example 1

Code:
<%!

int radius = 7;
double pi = 3.1415;

%>

3. Scriptlets

JSP Scriptlets starts with '<%' and ends with '%>'". This is where the important Java code for JSP
page is written.

Example

Code:
<%
String id, name, dob, email, address;

id = request.getParameter("id");
name = request.getParameter("name");
dob = request.getParameter("dob");

email = request.getParameter("email");
address = request.getParameter("address");

sessionEJB.addClient(id, name, dob, email, address);
%>
request, response, session and out are the variables available in scriptlets.

4. Expressions

JSP expressions starts with '<%="and ends with '%>". If you want to show some value, you need
to put it in between these tags.

Example:
Code:

<%!

double radius = 7;
double pi = 22/7,

double area()

{

return pi*radius*radius;

}

%>
<htmlI>
<body>
Area of circle is <%= area() %>

</body>
</html>

5.JSP Comments

JSP comment marks text or statements that the JSP container should ignore. A JSP comment is
useful when you want to hide or "comment out", a part of your JSP page.

Following is the syntax of the JSP comments —

<%-- This is JSP comment --%>

Following example shows the JSP Comments —

<html>
<head><title> A Comment Test</title></head>

<body>
<h2>A Test of Comments</h2>
<%-- This comment will not be visible in the page source --%>
</body>
</htm]>

	Java.util.Vector Class in Java
	Other methods required for using Cookies
	1. 1. Directives
	2. Declarations
	3. Scriptlets
	4. Expressions
	5.JSP Comments

