VSN ¢) CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

IAT 3 —Nov. 2019

Sub: Computer Organization Sub Code: | 18CS34 \ Branch: \ CSE
Date: | 18/11/2019 | Duration: | 90 mins | Max Marks: |50 | Sem/Sec: | 3 (A,B,C) OBE
Answer FOUR FULL questions selecting AT LEAST ONE question FROM EACH PART MARKS | CO |RBT
1(a PART A
(@) TR [10]

Write the sequence of control steps required for single bus structure for each if the
following instructions:
i) Add the contents of memory location whose address is at memory location
NUM to register R1.

Imtornal processor
o
H Conrel signae
= |
Iasruction

—_= |
cos| L3
B

i Figere 7.1 Singlebus orgonizosion of the dotopoth lnside © processor,

. PCout, MARIn, Read, Select4, Add, Zin

. Zout, PCin, Yin, WMFEC
. MDRout, IRin
. PCout, MARIn, Read, Select4, Add, Zin
. Zout, PCin, WMFC
. MDRout, MARIn, Read, WMFC
. MDRout, MARIn, Read
. Rlout, Yin, WMFC
. MDRout, Add, Zin
10. Zout, R1in, End

OCQooO~NOoOOUTh,WN =

OR
2 (a) Brief note on Rambus Memory [4] co3| L2

* Rambus developed the implementation of narrow bus.
* Rambus technology is a fast signaling method used to transfer information betw
* The signals consist of much smaller voltage swings around a reference voltage \
* The reference voltage is about 2V.
* The two logical values are represented by 0.3V swings above and below V .
* This type of signaling is generally is known as Differential Signalling.
* Rambus provides a complete specification for design of communication called as
* Rambus memory has a clock frequency of 400 MHz.
* The data are transmitted on both the edges of clock so that effective data-trans
* Circuitry needed to interface to Rambus channel is included on chip. Such chips
(RDRAM = Rambus DRAMs).
* Rambus channel has:
1) 9 Data-lines (1*-8% line ->Transfer the data, 9% line->Parity checking).
2) Control-Line &
3) Power line.
* A two channel rambus has 18 data-lines which has no separate Address-Lines.
* Communication between processor and RDRAM modules is carried out b
transmitted on the data-lines.
* There are 3 types of packets:
1) Request
2) Acknowledge &
3) Data.

(b) Explain Memory Hierarchy with respect to cost, speed and size. [6]

' SIZE, and COST

Processor

Registers

Increasink Increasing Increasing

size - speed cost per bit

Primary L1
cache ’

b

1
Secondary 15 CO3

cache

A

1
Main
memory

. Magnetic disk
secondary
memory

Figure 8.14 Memory hierarchy.

L2

sFastest access is to the data held in
processor registers. Registers are at the top
of the memory hierarchy.

*Relatively small amount of memory that can
be implemented on the processor chip. This
is processor cache. Usually implemented as
SRAM.

»Two levels of cache.

Level 1(L1) cache is onthe processor chip.
Level 2 (L2) cache is in between main
memory and processor.

*Next level is main memory, implemented as
DRAM (SIMMSs,RIMM,DIMM). Much larger,
but much slower than cache memory.

*Next level is magnetic disks. Huge amount of
inexepensive storage.

*Speed of memory access is critical, the idea
is to bring instructions and data that will be
used in the near future as close to the
processor as possible.

PART B
With a figure, explain single bus organization of Datapath inside a processor.
hnd':wa-u
A Cousrol signa

L

[10]

CO5

L2

SINGLE BUS ORGANIZATION
¢ ALU and all the registers are interconnected via a Single Common Bus (Figure 7.1).

» Data & address lines of the external memory-bus is connected to the internal processor-bus via MDR

& MAR respectively. (MDR-> Memory Data Register, MAR - Memory Address Register).

* MDR has 2 inputs and 2 outputs. Data may be loaded
—+ into MDR either from memory-bus (external) or
— from processor-bus (internal).

* MAR's input is connected to internal-bus;
MAR'’s output is connected to external-bus.

« Instruction Decoder & Control Unit is responsible for
— issuing the control-signals to all the units inside the processor.
— Implementing the actions specified by the instruction (loaded in the IR).

« Register RO through R(n-1) are the Processor Registers.

The programmer can access these registers for general-purpose use.
* Only processor can access 3 registers Y, Z & Temp for temporary storage during program-execution.
The programmer cannot access these 3 registers.

« In ALV,

1) 'A" input gets the operand from the output of the multiplexer (MUX).

2) '8’ input gets the operand directly from the processor-bus.
* There are 2 options provided for "A’ input of the ALU.
* MUX is used to select one of the 2 inputs.

* MUX selects either
— output of Y or

—» constant-value 4(which is used to increment PC content).

« An instruction is executed by performing one or more of the following operations:
1) Transfer a word of data from one register to another or to the ALU.
2) Perform arithmetic or a logic operation and store the result in a register.
3) Fetch the contents of a given memory-location and load them into a register.
4) Store a word of data from a register into a given memory-location.
» Disadvantage: Only one data-word can be transferred over the bus in a clock cycle.
Solution: Provide multiple internal-paths. Multiple paths allow several data-transfers to take place in

parallel.
OR
4 (a) Explain the differences between Hardwired and Micro-programmed control with neat
diagram.
Attribute Hardwired Control Microprogrammed Control

Definition Hardwired control is a control | Micro programmed control is a control

mechanism to generate control- | mechanism to generate control-signals

signals by wusing gates, flip- | by using a memory called control stere

flops, decoders, and other | (CS), which contains the control-

digital circuits. signals.
Speed Fast Slow
Control functions Implemented In hardware. Implemented In software.
Flexibility Mot flexible to accommodate | More flexible, to accommodate new

new system specifications or
new instructions.

system specification or new instructions
redesign Is required.

Ability to handle large | Difficult. Easier.

or complex instruction

sets

Ability to support | Very difficult. Easy.

operating systems &

diagnostic features

Design process Complicated. Orderly and systematic.

Applications Mostly RISC microprocessors. Mainframeas, some microprocessors.
Instructionset size Usually under 100 instructions. | Usually over 100 instructions.

ROM size - 2K to 10K by 20-400 bit

microinstructions.

Chip area efficiency

Uzes least area.

Uses mora area.

[10]

CO5

L2

5(a) What is cache memory. Explain the following terms a) write through b) write back [10]
c) early restart d) Miss penalty e) average memory access time f) dirty bit g) valid
bit h) Hit rate i) Write buffer

e effectiveness of cache mechanism is based on the property of 'Locality of Reference’.
ality of Reference

any instructions in the localized areas of program are executed repeatedly during some time p
:mainder of the program is accessed relatively infrequently (Figure 8.15).

lere are 2 types:

) Temporal

» The recently executed instructions are likely to be executed again very soon.

') Spatial

+ Instructions in close proximity to recently executed instruction are also likely to be executed
active segment of program is placed in cache-memory, then total execution time can be redu
ock refers to the set of contiguous address locations of some size.

1e cache-line is used to refer to the cache-block.

Main

memory

Processor |- =4 Cache

Figure 8.15 Use of a cache memory.] cosl L2
e Cache-memory stores a reasonable number of blocks at a given time.
is number of blocks is small compared to the total number of blacks available in main
irrespondence b/w main-memory-block & cache-memory-block is specified by mappin
iche control hardware decides which block should be removed to create space for the
e collection of rule for making this decision is called the Replacement Algorithm.
e cache control-circuit determines whether the requested-word currently exists in the

HIT
e If the data is in the cache it is called a Read or Write hit.
¢ Read hit:
= The data is obtained from the cache.
e Write hit:

= Cache has a replica of the contents of the main memory.

= Contents of the cache and the main memory may be updated
simultaneously. This is the write-through protocol.

= Update the contents of the cache, and mark it as updated by setting a
bit known as the dirty bit or modified bit. The contents of the
main memory are updated when this block is replaced. This is
write-back or copy-back protocol.

MISS

When the addressed word in a Read operation is not in the cache, a read miss
occurs. The block of words that contains the requested word is copied from the main
memory into the cache. After the entire block is loaded into the cache, the particular
word requested is forwarded to the processor. Altematively, this word may be sent to
the processor as soon as it is read from the main memory. The latter approach, which is
called load-through, or early restart, reduces the processor’s waiting period somewhat,
but at the expense of more complex circuitry.

During a Write operation, if the addressed word is not in the cache, a write miss
occurs. Then, if the write-through protocol is used, the information is written directly
into the main memory. In the case of the write-back protocol, the block containing the
addressed word is first brought into the cache, and then the desired word in the cache
is overwritten with the new information.

MAPPING FUNCTION

OR
6(a) Explain basic concepts of pipeling in details . Also explain the hazards

PIPELING

BASIC CONCEPTS

The speed of execution of programs is influenced by many factors. One way to improve
performance is to use faster circuit technology to build the processor and the main
memory. Another possibility is to arrange the hardware so that more than one operation
can be performed at the same time. In this way, the number of operations performed per
second is increased even though the elapsed time needed to perform any one operation
15 not changed.

FF | E Fy E; B Ey

{a) Sequential execution

Interstage buffer
Bi

Instruction .
fetch T Breeuion
unit

(b} Hardware organization

[10]

CO5

L2

— Time

Clockcycle 1 2 3 4
Instruction
I F E,
) F E;
I3 F3 E;
{c} Pipelined execution

Figure 8.1 Basic idea of instruction pipelining.

The computer is controlled by a clock whose period is such that the fetch and
execute steps of any instruction can each be completed in one clock cycle. Operation of
the computer proceeds as in Figure 8.1c. In the first clock cycle, the fetch unit fetches
an instruction I; (step F;) and stores it in buffer B1 at the end of the clock cycle. In
the second clock cycle, the instruction fetch unit proceeds with the fetch operation for
instruction I; (step F>). Meanwhile, the execution unit performs the operation specified
by instruction I, which is available to it in buffer B1 (step E;). By the end of the

second clock cycle, the execution of instruction [; is completed and instruction I is
available. Instruction I, is stored in B1, replacing I;, which is no longer needed. Step B,
is performed by the execution unit during the third clock cycle, while instruction I is
being fetched by the fetch unit. In this manner, both the fetch and execute units are
kept busy all the time. If the pattern in Figure 8.1c can be sustained for a long time, the
completion rate of instruction execution will be twice that achievable by the sequential
operation depicted in Figure 8.1a.

In summary, the fetch and execute units in Figure 8.1b constitute a two-stage
pipeline in which each stage performs one step in processing an instruction. An inter-
stage storage buffer, B1, is needed to hold the information being passed from one stage
to the next. New information is loaded into this buffer at the end of each clock cycle.

The processing of an instruction need not be divided into only two steps. For
example, a pipelined processor may process each instruction in four steps, as follows:

F Fetch: read the instruction from the memory.

D Decode: decode the instruction and fetch the source operand(s).
E Execute: perform the operation specified by the instruction.

W Write: store the result in the destination location.

ROLE OF CACHE MEMORY

Each stage in a pipeline is expected to complete its operation in one clock cycle. Hence,
the clock period should be sufficiently long to complete the task being performed in
any stage. If different units require different amounts of time, the clock period must
allow the longest task to be completed. A unit that completes its task early is idle for
the remainder of the clock period. Hence, pipelining is most effective in improving

performance if the tasks being performed in different stages require about the same
amount of time.

This consideration is particularly important for the instruction fetch step, which is
assigned one clock period in Figure 8.24. The clock cycle has to be equal to or greater
than the time needed to complete a fetch operation. However, the access time of the
main memory may be as much as ten times greater than the time needed to perform
basic pipeline stage operations inside the processor, such as adding two numbers. Thus,
if each instruction fetch required access to the main memory, pipelining would be of
little value.

— Time
Clock cycle 1 2 3 4 5 [\ T
Instruction
i Fy Dy E, L
L B Dy Ey W,
h FFyDy{ By | W
s Fy D, Ey W

(a) Instruction execution divided into four steps

Intersiage buffers

D : Decode
F:Feich instruction E: Execute W Write
instruction and fetch operation results
operands

Bl B2 B3

{b) Hardware organization

PIPELINE PERFORMANCE

For a variety of reasons, one of the pipeline stages may not be able to complete its
processing task for a given instruction in the time allotted. For example, stage E in the
four-stage pipeline of Figure 8.2b is responsible for arithmetic and logic operations,
and one clock cycle is assigned for this task. Although this may be sufficient for
most operations, some operations, such as divide, may require more time to complete.
Figure 8.3 shows an example in which the operation specified in instruction I, requires
three cycles to complete, from cycle 4 through cycle 6. Thus, in cycles 5 and 6, the
Write stage must be told to do nothing, because it has no data to work with. Meanwhile,
the information in buffer B2 must remain intact until the Execute stage has completed
its operation. This means that stage 2 and, in turn, stage 1 are blocked from accepting
new instructions because the information in B1 cannot be overwritten. Thus, steps D
and Fs must be postponed as shown.

e Time
Clock cycle | 2 3 4 5 4] T B 9
Instruction
Iy Fy D, E, W,
I 133 Dy Ey L
I F; Dy Eq W,y
Iy Fs Ds E;

Figure 8.3 Effect of an execution operation taking more than one clock cycle.

8.1 Baswc ConceErm

Pipelined operation in Figure 8.3 is said to have been stalled for two clock cycles
Normal pipelined operation resumes in cycle 7. Any condition that causes the pipeline
to stall is called a hazard. We have just seen an example of a data hazard. A data hazarc
is any condition in which either the source or the destination operands of an instructior
are not available at the time expected in the pipeline. ﬁsnmuitsumr. operation has tc
be delayed, and the pipeline stalls.

The pipeline may also be stalled because of a delay in the avm]ahihty of an instruc:
tion. For example, this may be a result of a miss in the cache, requiring the instructior
to be fetched from the main memory. Such hazards are ofien called control hazards o
instruction hazards. The effect of a cache miss on pipelined operation is illustrated ir
Figure 8.4. Instruction I is fetched from the cache in cycle 1, and its execution proceeds
normally. However, the fetch operation for instruction I, which is started in cycle 2
results in a cache miss. The instruction fetch unit must now suspend any further fetch re-
quests and wait for I to arrive. We assume that instruction I, is received and loaded intc
buffer B1 at the end of cycle 5. The pipeline resumes its normal operation at that point

— Time
Clock cycle 1 2 3 4 5 6 7 8 9
Instruction
I Fy Dy | B | W
] F D, | BB | W,
h F | Dy | B | Wy
{a) Instruction execution steps in successive clock cycles
—a= Time
Clock cycle 1 2 3 4 56 7 8 9
Stage
FFch F, F F § F, K
D: Decode D, idle idle ide Dy D
E: Executc E, idle ide ide E B

W Write W, ide idle idle W, Wy

(b} Function performed by each processor stage in succassive clock cycles

Figure 8.4 Pipeline stoll caused by a cache miss in F2.

PART D Co3
7(a) Explain three types of mapping functions for cache memory. [15]
(Direct mapping-5M, Associative Mapping- 5M, Set-associative mapping- 5M)

L2

Main
memory

Block 0

Block 1

Block 127
Block 128
Block 129

Cache

Block 256

Block 257

Block 127

Block 4095

Tag Block Word

| IEI | 7 | E I!'-tmn memory address
Fiqure 8.16 Direct-mapped coche.

DIRECT MAPPING

This technique is easy to implement but not very flexible.

Block j of the main memory maps onto j modulo 128 of the cache. For example, whenever
one of the main memory blocks 0, 128, 256, Is loaded in the cache, it is stored in cache
block 0 . Main memory blocks 1, 129, 257, are stored in cache block 1 {one at a time), and
so on. Contention may occur for a single cache block required by multiple memory blocks.
E.z when for program execution both memory block 1 and 129 are required but cache block
1 can only store one memory block. To resolve this, new blocks are allowed to overwrite the

currently resident block.

From example,

4096 memory blocks need to be mapped to 128 cache blocks. i.e, each cache block
identified 32 memory blocks(4096/128).

Main memory address is divided into three parts:

Tag (5 bits): identify which memory block (out of 32 in this case) is currently resident in the
cache

Block (7 bits): cache block position where the new memory block must be stored

Word (4 bits): selects one of the words of the memory block (out of 16 words per block in
this case)

AS50CIATIVE MAPPING

12 4

Main
MEmOry

Block O

Block 1

=
-

i 4
LR
LA]

i %
L]
L
L]

Main memory address

Figure 8.17 Associafive-mapped cache.

- High order 12 bits or tag bits identify a memory block when residing in the cache.

It is more flexible than direct mapping technique but more expensive. Main memory

Replacement algorithms can be used to replace an existing block in the cache when

L]
block can be placed into any cache block position.
* Memory address is divided into two fields:
- Low order 4 bits identify the memory word within a block.
Flexible, and uses cache space efficiently.
L]
the cache is full.
L]

Costis higher than direct-mapped cache because of the need to search all 128

patterns to determine whether a given block is in the cache.

SET-ASS0CIATIVE MAPPING

Cache

I

B g
Sl <
n

- ol
Setl < Block 2
ia
: : Block 3
S —
lag . X
Selhd < Block 126
1a
g Block 127
Lz Sel Word

Main memory

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

I Block 4095

I & | 6 1 4 | Mainmemory address
Figure 8.18 Sel-associative-mapped coche with two blocks per set.

Itis a combination of direct mapping and associative mapping techniques.
Blocks of the cache are grouped into sets, and the mapping allows a block of the main

memory to reside in any block of a specific set.

Contention problem of direct mapping is eased by having a few choices for block

(b) Briefly explain replacement algorithms for cache memory.

Example:

Consider cache controller is tracking a set of four blocks in a set associative cache.

A 2-bit counter is used for each block (00=0, 01=1, 10=2, 11=3)

a) Hitoccurs:

The counter of the block that is referenced is set to 0. Other block counters having
value less than the value of the referenced counter are incremented by 1. Block
counters having value greater than the value of referenced counter are remain

unchanged.
Initially: 2, 3, 0,1
Hit occurs for 2

Finally: Q (after set to 0), 3 (unchanged), 1 (after increment), 2 (after increment)

b} Miss occurs (Set not full):

The counter of the block where new block is loaded from memory is set to 0. All

other block counters value is incremented by 1.
Initially: 2,1, 0, _
Miss occurs
Finally: 3,2, 1,0 (new)
c} Miss occurs (Set full):

The block with the highest counter value j.e, 3 is removed. The new block is put into
its place and its counter value is set to 0. All other three blocks counter values are

incremented by 1.

Initially: 2, 3, 0,1

Miss occurs

Finally: 3,0 (replaced), 1, 2

OR

(5]

COo3

L2

8 () ain with a neat diagram microprogrammed control. Also explain branching in

yprogrammed control
;roprogrammed Control

Starting
R = address
generalor
Clock - upPC

Control
e > W

#7.16 Boasic organizofion of a microprogrommed control unit.
roprogramming is a method of control unit design (Figure 7.16).
itrol-signals are generated by a program similar to machine language programs.
ntrol Word(CW) is a word whose individual bits represent various control-signals (like Add, PC
:h of the control-steps in control sequence of an instruction defines a unique combination of 1
Cw.
ividual control-words in microroutine are referred to as microinstructions (Figure 7.15).
sequence of CWs corresponding to control-sequence of a machine instruction constitutes
oroutine.
2 microroutines for all instructions in the instruction-set of a computer are stored in a spe
ory called the Control Store (CS).
ntrol-unit generates control-signals for any instruction by sequentially reading CWs
sponding microroutine from CS.
C is used to read CWs sequentially from CS. (HPC-> Microprogram Counter).
irry time new instruction is loaded into IR, o/p of Starting Address Generator is loaded into pl
in, UPC is automatically incremented by clock;
causing successive microinstructions to be read from CS.
Hence, control-signals are delivered to various parts of processor in correct sequence.

antages

simplifies the design of control unit. Thus it is both, cheaper and less error prone implement.
ntrol functions are implemented in software rather than hardware.

e design process is orderly and systematic.

re flexible, can be changed to accommodate new system specifications or to correct the de:
s quickly and cheaply.

mplex function such as floating point arithmetic can be realized efficiently.

idvantages

nicroprogrammed control unit is somewhat slower than the hardwired control unit, because tim
ired to access the microinstructions from CM.

e flexibility is achieved at some extra hardware cost due to the control memory and its ac
litry.

p Action

PCout, MAR,,,, Read, Selectd, Add, Z;,
Zouty PCiny Yin, WMFC

MDRgy;, IRy,

R3ous, MAR,,,, Read

Rlgu, Yin, WMFC

MDR, ., SelectY, Add, Z,,

Zout, Rlin, End [

Microinstructions

©7.6 Control sequence for exacution of the instruction Add (R3),R1 v

[12]

CO5

L2

| PC,u

£d
E

MAR,,
Read
IRIR
YIN
Select
Add
Z,

51
-l

= | WMFC
End

=
e — I — = T~ T — N =~]

— N —
_ =2 2
—

o = o= o= Rl

(==~ -

- o o o o = o | 2y

o o @ — =@ o o | Ry,
-

..

=1 Bh LA e L) R e
oo o - o D -
-

R R R T~ .
I e

& -~ oo - o B MDR_,,;

- E-E-E-E-E-ERA

=T = T = T T = T =]
o o o 9 9 9 =
=T — B — T — I — I~ R
=T R = T = R = = R

[—IE — B — N — |

— I — |

|
i

|
wre7.15 An example of microinstructions for Figure 7.6.

ORGANIZATION OF MICROPROGRAMMED CONTROL UNIT TO SUPPORT CONDI
BRANCHING
* Drawback of previous Microprogram control:
» It cannot handle the situation when the control unit is required to check the status of
condition codes or external inputs to choose between alternative courses of action.
Solution:
» Use conditional branch microinstruction.
¢ In case of conditional branching, microinstructions specify which of the external inputs, ¢
codes should be checked as a condition for branching to take place.
¢ Starting and Branch Address Generator Block loads a new address into WPC
microinstruction instructs it to do so (Figure 7.18).
* To allow implementation of a conditional branch, inputs to this block consist of
— external inputs and condition-codes &
— contents of IR.
* UPC is incremented every time a new microinstruction is fetched from microprogram memor
in following situations:
1) When a new instruction is loaded into IR, UPC is loaded with starting-address of mici
for that instruction.
2) When a Branch microinstruction is encountered and branch condition is satisfied
loaded with branch-address,
3) When an End microinstruction is encountered, pPC is loaded with address of firs
microroutine for instruction fetch cycle.

E
K= i:l;nu'l
Starting and —
R =D bk s — R
generator
K
Clock ppC
= e

Figure 7.18 Orgonization of the control unit 1o allow conditional branching in the microprogrom.

Address Microinstruction

0 PCout, MAR;y, Read, Selectd, Add, Z;,,

1 Zouty PCiny Yin, WMFC

2 MDRou, IRin

3 Branch to starting address of appropriate microroutine
25 If N=0, then branch to microinstruction 0

26 Offset-field-of-IR,,¢, SelectY, Add, Z;,

27 Zout, PCin, End

Figure 7.17 Microroutine for the instruction Bronch < 0.

MICROINSTRUCTIONS
o A simple way to structure microinstructions is to assign one bit position to each cor
required in the CPU.
* There are 42 signals and hence each microinstruction will have 42 bits.
+ Drawbacks of microprogrammed control:
1) Assigning individual bits to each control-signal results in long microinstructions bec
the number of required signals is usually large.
2) Available bit-space is poorly used because
only a few bits are set to 1 in any given microinstruction.
¢ Solution: Signals can be grouped because
1) Most signals are not needed simultaneously.
2) Many signals are mutually exclusive. E.g. only 1 function of ALU can be activated al
For ex: Gating signals: IN and OUT signals (Figure 7.19).
Control-signals: Read, Write.
ALU signals: Add, Sub, Mul, Div, Mod.
* Grouping control-signals into fields requires a little more hardware because
decoding-circuits must be used to decode bit patterns of each field into individual contro
¢ Advantage: This method results in a smaller control-store (only 20 bits are needed to
patterns for the 42 signals).

MICROINSTRUCTIONS
e A simple way to structure microinstructions is to assign one bit position to each cont
required in the CPU.
e There are 42 signals and hence each microinstruction will have 42 bits.
¢ Drawbacks of microprogrammed control:
1) Assigning individual bits to each control-signal results in long microinstructions bec:
the number of required signals is usually large.
2) Available bit-space is poorly used because
only a few bits are set to 1 in any given microinstruction.
¢ Solution: Signals can be grouped because
1) Most signals are not needed simultaneously.
2) Many signals are mutually exclusive. E.g. only 1 function of ALU can be activated at
For ex: Gating signals: IN and OUT signals (Figure 7.19).
Control-signals: Read, Write.
ALU signals: Add, Sub, Mul, Div, Mod.
* Grouping control-signals into fields requires a little more hardware because
decoding-circuits must be used to decode bit patterns of each field into individual control:
¢ Advantage: This method results in a smaller control-store (only 20 bits are needed to
patterns for the 42 signals).

Micrainstruction

Fi P2 F R FS
F1 (4 bits) F2 (3 bits) F3 (3 bits) F4(bits) FS(2bits)
0000: No transfer ~ 000: Notransfer 000: Notransfer 0000:Add 00: No action
0001: PC,, 001: PC,, 001: MAR, 0001:Sub O: Read
0010: MDR,,, 010: IR, 010: MDR,, . 10: Write
0011:2,,, oz, 011: TEMP,, .
0100: R0, 100; RO, 100: Y, 1111: XOR
0101: R1,,, 101: R1;, v
0110: R2,,, 110: R2,, lud
O111: R3 e 11:R3,,
1010: TEMP,,,,
1011: Offsetpy
F6 F1 F8 1ee

F6(1 bit) F7 (1 bit) F8 (1 bit)

0: SelectY 0 No action 0: Continue

1: Selectd 1: WMEC 1: End

Figure 7.19 An example of a partial format for fiekdencoded microinstructions.

(b) Explain with a neat diagram hardwired control.

. Hardwired Control

[o=]=

counter
Step decoder
T, T oo T, AM
Py ¢
INS, Ts
INS, lennn
Instruction
IR . tecod . Encoder
¢ * - Condition T
codes
INS,
Run 1 "} End
W
Control signals
Figure 7.11 Sepoaration of the decoding and encoding functions. Za

Figure 7.12 Generation of the Z, control signal

(8]

CO5

L2

* Hardwired control is a method of control unit design (Figure 7.11).
* The control-signals are generated by using logic circuits such as gates, flip-flops, decoders etc.
* Decoder/Encoder Block is a combinational-circuit that generates required control-outputs
depending on state of all its inputs.
» Instruction Decoder
» It decodes the instruction loaded in the IR.
» If IR is an 8 bit register, then instruction decoder generates 28(256 lines); one for each
instruction.
> It consists of a separate output-lines INS; through INS, for each machine instruction.
> According to code in the IR, one of the output-lines INS; through INSy is set to 1, and all
other lines are set to 0.
* Step-Decoder provides a separate signal line for each step in the control sequence.
s Encoder
> It gets the input from instruction decoder, step decoder, external inputs and condition codes.
> It uses all these inputs to generate individual control-signals: Y;,, PCo, Add, End and so on.
» For example (Figure 7.12), Z,,=T;+Ts.ADD+T4BR
; This signal is asserted during time-slot T for all instructions.
during Tg for an Add instruction.
during T4 for unconditional branch instruction
¢ When RUN=1, counter is incremented by 1 at the end of every clock cycle.
When RUN=0, counter stops counting.
» After execution of each instruction, end signal is generated. End signal resets step counter.
» Sequence of operations carried out by this machine is determined by wiring of logic circuits, hence
the name “"hardwired”.
* Advantage: Can operate at high speed.
¢ Disadvantages:
1) Since no. of instructions/control-lines is often in hundreds, the complexity of control unit is
very high.
2) It is costly and difficult to design.
3) The control unit is inflexible because it is difficult to change the design.

