

CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test 3 – Nov 2019

Solutions

Sub: Software Engineering Code: 18CS35

Date: 16/ 11/2019 Duration: 90 mins Max Marks: 50 Sem: III Branch: CSE

Note: Answer any five questions:

1 a) Explain the different stages of acceptance testing with a diagram - 6 M

Six stages in the acceptance testing process

• Define acceptance criteria

• Plan acceptance testing

• Derive acceptance tests

• Run acceptance tests

• Negotiate test results

• Reject/accept system

 Define acceptance criteria: This stage should, ideally, take place early in the process before

the contract for the system is signed. The acceptance criteria should be part of the system

contract and be agreed between the customer and the developer. Detailed requirements maynot be

available and there may be significant requirements change during the development

process.

Plan acceptance testing: This involves deciding on the resources, time, and budget for

acceptance testing and establishing a testing schedule. The acceptance test plan should also

discuss the required coverage of the requirements and the order in which system features aretested.

It should define risks to the testing process, such as system crashes and inadequate

performance, and discuss how these risks can be mitigated.

Derive acceptance tests: Once acceptance criteria have been established, tests have to be

designed to check whether or not a system is acceptable. Acceptance tests should aim to testboth

the functional and non-functional characteristics (e.g., performance) of the system.

Run acceptance tests: The agreed acceptance tests are executed on the system.

Ideally, this should take place in the actual environment where the system will be used, but this

may be disruptive and impractical. Therefore, a user testing environment may have to be set

up to run these tests. It is difficult to automate this process as part of the acceptance tests may

involve testing the interactions between end-users and the system.

Negotiate test results: It is very unlikely that all of the defined acceptance tests will pass and

10M

that there will be no problems with the system. If this is the case, then acceptance testing

is complete and the system can be handed over. More commonly, some problems will

be discovered. In such cases, the developer and the customer have to negotiate to decide if the

system is good enough to be put into use. They must also agree on the developer’s response to

identified problems.

Reject/accept system: This stage involves a meeting between the developers and the

customer to decide on whether the system should be accepted. If the system is not good enough

for use, then further development is required to fix the identified problems. Once complete, the

acceptance testing phase is repeated.

b) Explain about software maintenance prediction – 4 M

 Maintenance prediction is concerned with assessing which parts of the system may cause

problems and have high maintenance costs

 Change acceptance depends on the maintainability of the components affected by

the change;

 Implementing changes degrades the system and reduces its maintainability;

 Maintenance costs depend on the number of changes and costs of change depend on

maintainability.

 Predicting the number of changes requires and understanding of the relationships

between a system and its environment.

 Tightly coupled systems require changes whenever the environment is changed.

 Factors influencing this relationship are

 Number and complexity of system interfaces;

 Number of inherently volatile system requirements;

 The business processes where the system is used.

a. 2

2
a)

b) What is test driven development explain with a diagram also list its benefits. – 10 M

Test-driven development (TDD) is an approach to program development in which

you inter-leave testing and code development.

• Tests are written before code and ‘passing’ the tests is the critical driver of development.

• TDD was introduced as part of agile methods such as Extreme Programming. However, it

can also be used in plan-driven development processes.

10M

The fundamental TDD process is shown in Figure. The steps in the process are as follows:

 You start by identifying the increment of functionality that is required. This should

normally be small and implementable in a few lines of code.

 You write a test for this functionality and implement this as an automated test. This means

that the test can be executed and will report whether or not it has passed or failed.

 You then run the test, along with all other tests that have been implemented. Initially, you

have not implemented the functionality so the new test will fail. This is deliberate as it

shows that the test adds something to the test set.

 You then implement the functionality and re-run the test. This may involve refactoring

existing code to improve it and add new code to what’s already there.

 Once all tests run successfully, you move on to implementing the next chunk of

functionality.

Benefits of test-driven development are:

a. Code coverage: In principle, every code segment that you write should have at least one

associated test. Therefore, you can be confident that all of the code in the system has

actually been executed. Code is tested as it is written, so defects are discovered

early in the development process.

b. Regression testing: A test suite is developed incrementally as a program is developed.

Regression tests can be run to check that changes to the program have not introduced new

bugs.

c. Simplified debugging: When a test fails, it should be obvious where the problem lies. The

newly written code needs to be checked and modified. Debugging tools need not be used to

locate the problem. Reports of the use of test-driven development suggest that it is hardly

ever necessary to use an automated debugger in test-driven development

d. System documentation: The tests themselves act as a form of documentation that

describes what the code should be doing. Reading the tests can make it easier to understand

the code.

Test-driven development is of most use in new software development where the

functionality is either implemented in new code or by using well-tested standard libraries.

If you are reusing large code components or legacy systems then you need to write tests for

these systems as a whole. Test-driven development may also be ineffective with multi-

threaded systems. The different threads may be interleaved at different times in different

test runs, and so may produce different results.

c)

3
a) Explain the process of software reengineering. Also mention the advantages – 6 M

The activities in this reengineering process are as follows:

Source code translation: Using a translation tool, the program is converted from an old

programming language to a more modern version of the same language or to a different

language.

Reverse engineering: The program is analyzed and information extracted from it. This helps

to document its organization and functionality. Again, this process is usually completely

automated.

Program structure improvement: The control structure of the program is analyzed and

modified to make it easier to read and understand. This can be partially automated but some

manual intervention is usually required.

Program modularization: Related parts of the program are grouped together and, where

appropriate, redundancy is removed. In some cases, this stage may involve architectural

refactoring (e.g., a system that uses several different data stores may be to use a single

repository). This is a manual process.

Data reengineering: The data processed by the program is changed to reflect program

changes. This may mean redefining database schemas and converting existing databases to

the new structure.

b) Explain the four strategic options of legacy system management – 4 M

Most organizations usually have a portfolio of legacy systems that they use, with a limited

budget for maintaining and upgrading these systems. They have to decide how to get the

best return on their investment. This involves making a realistic assessment of their legacy

systems and then deciding on the most appropriate strategy for evolving these systems.

There are four strategic options:

a. Scrap the system completely This option should be chosen when the system is not

making an effective contribution to business processes. This commonly occurs

when business processes have changed since the system was installed and are no

longer reliant on the legacy system.

b. Leave the system unchanged and continue with regular maintenance This option

should be chosen when the system is still required but is fairly stable and the system

users make relatively few change requests.

10M

c. Reengineer the system to improve its maintainability This option should be chosen

when the system quality has been degraded by change and where a new change to

the system is still being proposed. This process may include developing new

interface components so that the original system can work with other, newer

systems.

d. Replace all or part of the system with a new system This option should be chosen

when factors, such as new hardware, mean that the old system cannot continue in

operation or where off-the-shelf systems would allow the new system to be

developed at a reasonable cost. In many cases, an evolutionary replacement strategy

can be adopted in which major system components are replaced by off the-shelf

systems with other components reused wherever possible.

c)

4
a) Define “program evolution dynamics” and the different Lehman’s laws concerning system

change – 10M

Program evolution dynamics is the study of system change. In the 1970s and 1980s,

Lehman and Belady (1985) carried out several empirical studies of system change with a

view to understanding more about characteristics of software evolution. The work

continued in the 1990s as Lehman and others investigated the significance of feedback in

evolution processes (Lehman, 1996; Lehman et al., 1998; Lehman et al.,2001). From these

studies, they proposed ‘Lehman’s laws’ concerning system change.

Lehman and Belady claim these laws are likely to be true for all types of large

organizational software systems (what they call E-type systems). These are systems in

which the requirements are changing to reflect changing business needs. New releases of

the system are essential for the system to provide business value.

 'Lehman's Law'

10M

d) 5

5
a) Explain various inspection checklist for software inspection process – 6M

 These are peer reviews where engineers examine the source of a system with the

aim of discovering anomalies and defects.

 Inspections do not require execution of a system so may be used before

implementation.

 They may be applied to any representation of the system (requirements,

design,configuration data, test data, etc.).

 They have been shown to be an effective technique for discovering program errors.

 Checklist of common errors should be used to

drive the inspection.

 Error checklists are programming language

dependent and reflect the characteristic errors that are likely to arise in the

language.

 In general, the 'weaker' the type checking, the larger the checklist.

 Examples: Initialisation, Constant naming, loop

termination, array bounds, etc.

Fault

class

Inspection check

Data

faults
 Are all program variables initialized before their values are used?

 Have all constants been named?

 Should the upper bound of arrays be equal to the size of the array or Size -1?

 If character strings are used, is a delimiter explicitly assigned?

 Is there any possibility of buffer overflow?

Control

faults
 For each conditional statement, is the condition correct?

 Is each loop certain to terminate?

 Are compound statements correctly bracketed?

 In case statements, are all possible cases accounted for?

 If a break is required after each case in case statements, has it been included?

Input/ou

tput

faults

 Are all input variables used?

 Are all output variables assigned a value before they are output?

 Can unexpected inputs cause corruption?

10M

b) Explain different types of software standards and mention their importance – 4M

Standards define the required attributes of a product or process. They play an important role in

quality management. Standards may be international, national, and organizational or project

standards. They may not be seen as relevant and up-to-date by software engineers. They often

involve too much bureaucratic form filling.

If they are unsupported by software tools, tedious form filling work is often involved to maintain

the documentation associated with the standards. Involve practitioners in development. Engineers

should understand the rationale underlying a standard.

Review standards and their usage regularly. Standards can quickly become outdated and this

reduces their credibility amongst practitioners .Detailed standards should have specialized tool

support. Excessive clerical work is the most significant complaint against standards.

 Web-based forms are not good enough.
 Product standards

 Apply to the software product being developed. They include document standards, such
as the structure of requirements documents, documentation standards, such as a
standard comment header for an object class definition, and coding standards, which
define how a programming language should be used.

 Process standards
 These define the processes that should be followed during software development. Process

standards may include definitions of specification, design and validation processes,
process support tools and a description of the documents that should be written during
these processes.

Product standards Process standards

Design review form Design review conduct

Requirements document

structure

Submission of new code for

system building

Method header format Version release process

Java programming style Project plan approval process

Project plan format Change control process

Change request form Test recording process

Importance of standards

 Encapsulation of best practice- avoids repetition of past mistakes.
 They are a framework for defining what quality means in a particular setting i.e. that

organization’s view of quality.
 They provide continuity - new staff can understand the organisation by understanding the

standards that are used.

e) 6

6

a) List and explain the factors affecting software pricing – 5M
In principle, the price of a software product to a customer is simply the cost of development plus profit

for the developer. Figure above shows the factors affecting software pricing. It is essential to think

about organizational concerns, the risks associated with the project, and the type of contract that will be

used. These may cause the price to be adjusted upwards or downwards
Because of the organizational considerations involved, deciding on a project price should be a group

activity involving marketing and sales staff, senior management, and project managers

Factor Description

Contractual terms A customer may be willing to allow the developer to retain ownership of the source

code and reuse it in other projects. The price charged may then be less than if the

software source code is handed over to the customer.

Cost estimate

uncertainty

If an organization is unsure of its cost estimate, it may increase its price by a

contingency over and above its normal profit.

Financial health Developers in financial difficulty may lower their price to gain a contract. It is better

to make a smaller than normal profit or break even than to go out of business. Cash

flow is more important than profit in difficult economic times.

Market

opportunity

A development organization may quote a low price because it wishes to move into a

new segment of the software market. Accepting a low profit on one project may give

the organization the opportunity to make a greater profit later. The experience gained

may also help it develop new products.

Requirements

volatility

If the requirements are likely to change, an organization may lower its price to win a

contract. After the contract is awarded, high prices can be charged for changes to the

requirements.

b)Explain the plan driven development approach to software engineering – 5M

Plan-driven or plan-based development is an approach to software engineering where the

development process is planned in detail. Plan-driven development is based on engineering

project management techniques and is the ‘traditional’ way of managing large software

development projects.A project plan is created that records the work to be done, who will

do it, the development schedule and the work products. Managers use the plan to support

project decision making and as a way of measuring progress. The arguments in favor of a

plan-driven approach are that early planning allows organizational issues (availability of

staff, other projects, etc.) to be closely taken into account, and that potential problems and

dependencies are discovered before the project starts, rather than once the project is

underway. The principal argument against plan-driven development is that many early

decisions have to be revised because of changes to the environment in which the software

is to be developed and used.

In a plan-driven development project, a project plan sets out the resources available to the

project, the work breakdown and a schedule for carrying out the work.

Plan sections are the following

 Introduction

 Project organization

 Risk analysis

 Hardware and software resource requirements

 Work breakdown

10M

 Project schedule

 Monitoring and reporting mechanisms

Project plan supplements

Plan Description

Configuration management
plan

Describes the configuration management procedures
and structures to be used.

Deployment plan Describes how the software and associated hardware
(if required) will be deployed in the customer’s
environment. This should include a plan for migrating
data from existing systems.

Maintenance plan Predicts the maintenance requirements, costs, and
effort.

Quality plan Describes the quality procedures and standards that
will be used in a project.

Validation plan Describes the approach, resources, and schedule
used for system validation.

f) 7

7
a) Explain COCOMO II estimation model – 8M

An empirical model based on project experience. Well-documented, ‘independent’ model

which is not tied to a specific software vendor. Long history from initial version published

in 1981 (COCOMO-81) through various instantiations to COCOMO 2.

COCOMO 2 takes into account different approaches to software development, reuse, etc.

COCOMO 2 incorporates a range of sub-models that produce increasingly detailed

software estimates.

The sub-models in COCOMO 2 are:

a. Application composition model. Used when software is composed from existing

parts. Supports prototyping projects and projects where there is extensive reuse.

Based on standard estimates of developer productivity in application (object)

points/month. Takes software tool use into account.

Formula is

PM = (NAP ´ (1 - %reuse/100)) / PROD

PM is the effort in person-months, NAP is the number of application points and

PROD is the productivity.

Developer’s
experience
and capability

Very low Low Nominal High Very high

ICASE
maturity and
capability

Very low Low Nominal High Very high

PROD
(NAP/month)

4 7 13 25 50

b. Early design model. Used when requirements are available but design has not yet

started.Estimates can be made after the requirements have been agreed.Based on a standard

formula for algorithmic models

PM = A ´ Size
B ´ M where

M = PERS ´ RCPX ´ RUSE ´ PDIF ´ PREX ´ FCIL ´ SCED;

A = 2.94 in initial calibration,

Size in KLOC,

B varies from 1.1 to 1.24 depending on novelty of the project, development

flexibility, risk management approaches and the process maturity.

 Multipliers reflect the capability of the developers, the non-functional requirements, the

familiarity with the development platform, etc.

 RCPX - product reliability and complexity;

 RUSE - the reuse required;

 PDIF - platform difficulty;

 PREX - personnel experience;

 PERS - personnel capability;

 SCED - required schedule;

 FCIL - the team support facilities.

c. Reuse model. Used to compute the effort of integrating reusable components.

Takes into account black-box code that is reused without change and code that has to be

adapted to integrate it with new code. There are two versions:

 Black-box reuse where code is not modified. An effort estimate (PM) is

computed.

 White-box reuse where code is modified. A size estimate equivalent to the

number of lines of new source code is computed. This then adjusts the size

estimate for new code.

Reuse model estimates 1 -For generated code:

PM = (ASLOC * AT/100)/ATPROD

 ASLOC is the number of lines of generated code

 AT is the percentage of code automatically generated.

 ATPROD is the productivity of engineers in integrating this code.

Reuse model estimates 2 - When code has to be understood and integrated:

ESLOC = ASLOC * (1-AT/100) * AAM.

 ASLOC and AT as before.

 AAM is the adaptation adjustment multiplier computed from the costs of changing

the reused code, the costs of understanding how to integrate the code and the costs

of reuse decision making.

d. Post-architecture model. Used once the system architecture has been designed and

more information about the system is available.

 Uses the same formula as the early design model but with 17 rather than 7 associated

multipliers.

 The code size is estimated as:

 Number of lines of new code to be developed;

 Estimate of equivalent number of lines of new code computed using the reuse

model;

 An estimate of the number of lines of code that have to be modified according to

requirements changes.

 This depends on 5 scale factors (see next slide). Their sum/100 is added to 1.01

 A company takes on a project in a new domain. The client has not defined the process to be

used and has not allowed time for risk analysis. The company has a CMM level 2 rating.

 Precedenteness - new project (4)

 Development flexibility - no client involvement - Very high (1)

 Architecture/risk resolution - No risk analysis - V. Low .(5)

 Team cohesion - new team - nominal (3)

 Process maturity - some control - nominal (3)

 Scale factor is therefore 1.17.

Scale factor Explanation

Architecture/risk resolution Reflects the extent of risk analysis carried out. Very low means little
analysis; extra-high means a complete and thorough risk analysis.

Development flexibility Reflects the degree of flexibility in the development process. Very low
means a prescribed process is used; extra-high means that the client
sets only general goals.

Precedentedness Reflects the previous experience of the organization with this type of
project. Very low means no previous experience; extra-high means
that the organization is completely familiar with this application
domain.

Process maturity Reflects the process maturity of the organization. The computation of
this value depends on the CMM Maturity Questionnaire, but an
estimate can be achieved by subtracting the CMM process maturity
level from 5.

Team cohesion

Reflects how well the development team knows each other and work
together. Very low means very difficult interactions; extra-high means
an integrated and effective team with no communication problems.

The figure below shows the COCOMO estimation models

b) What are the key stages in component measurement process/ analysis – 2M

o System component can be analyzed separately using a range of metrics.

o The values of these metrics may then compared for different components and,

perhaps, with historical measurement data collected on previous projects.

o Anomalous measurements, which deviate significantly from the norm, may imply

that there are problems with the quality of these components.

o The diagram bellows the stages in process of product measurement

g) 8 8 a) Explain the project scheduling using Activity bar chart and staff allocation chart. 10M

Project scheduling is the process of deciding how the work in a project will be organized as

separate tasks, and when and how these tasks will be executed. You estimate the calendar

time needed to complete each task, the effort required and who will work on the tasks that

have been identified. You also have to estimate the resources needed to complete each

task, such as the disk space required on a server, the time required on specialized hardware,

such as a simulator, and what the travel budget will be.

Project scheduling activities
 Split project into tasks and estimate time and resources required to complete each task.

 Organize tasks concurrently to make optimal

use of workforce.

 Minimize task dependencies to avoid delays

caused by one task waiting for another to complete.

 Dependent on project managers intuition and experience.

The project scheduling process

 Estimating the difficulty of problems and hence the cost of developing a solution is hard.

Productivity is not proportional to the number of people working on a task. Adding people

to a late project makes it later because of communication overheads. The unexpected

always happens. Always allow contingency in planning.

o Graphical notations are normally used to illustrate the project schedule.

o These show the project breakdown into tasks. Tasks should not be too small. They

should take about a week or two.

o Calendar-based: Bar charts are the most commonly used representation for project

schedules. They show the schedule as activities or resources against time.

o Activity networks: Show task dependencies

o

 Example of a staff allocation chart

Activity bar chart

