

Internal Assessment Test 3 – NOV. 2019

Sub: Web Technologies & its Applications Sub Code: 15CS71 Branch: CSE

Date:
18-11-

2019
Duration: 90 min’s Max Marks: 50 Sem / Sec: 7 – A, B & C OBE

Answer any FIVE FULL Questions
MAR

KS

CO RB

T

1(a) Briefly explain Arrays in PHP with examples.

PHP Arrays

PHP supports arrays. An array is a data structure that allows the programmer

to collect a number of related elements together in a single variable. An array

is actually an ordered map, which associates each value in the array with a

key.

 $days 0 | 1 | 2 | 3 | 4

 Keys

 "Mon"| "Tue"| "Wed"| "Thu" | "Fri" Values

 FiGURE 9.1 Visualization of a key-value array

Array keys in most programming languages are limited to integers, start at 0,

and go up by 1. In PHP, keys must be either integers or strings and need not be

sequential. This means you cannot use an array or object as a key.

 One should be especially careful about mixing the types of the keys for

an array since PHP performs cast operations on the keys that are not integers

or strings. You cannot have key “1” distinct from key 1 or 1.5, since all three

will be cast to the integer key 1.

Array values, unlike keys, are not restricted to integers and strings. They can

be any object, type, or primitive supported in PHP. You can even have objects

of your own types, so long as the keys in the array are integers and strings.

[10] CO

3
L2

Defining and Accessing an Array

The following declares an empty array named days:

$days = array();

To define the contents of an array as strings for the days of the week as shown

in Figure 9.1, you declare it with a comma-delimited list of values inside the (

) braces using either of two following syntax's:

$days = array("Mon","Tue","Wed","Thu","Fri");

$days = ["Mon","Tue","Wed","Thu","Fri"]; // alternate syntax

no keys are explicitly defined for the array, the default key values are 0, 1, 2, .

. . , n.

echoes the value of our $days array for the key=1, which results in output of Tue.

echo "Value at index 1 is ". $days[1]; // index starts at zero

You could also define the array elements individually using this same square

bracket notation:

$days = array();

$days[0] = "Mon";

$days[1] = "Tue";

$days[2] = "Wed";

// also alternate approach

$daysB = array();

$daysB[] = "Mon";

$daysB[] = "Tue";

$daysB[] = "Wed";

$days = array(0 =>"Mon", 1 =>"Tue", 2 =>"Wed", 3 =>"Thu", 4=>"Fri");

0->key

Mon->value

Figure 9.2 Explicitly assigning keys to array elements

$forecast = array("Mon" => 40, "Tue" => 47, "Wed" => 52, "Thu" => 40, "Fri" =>

37);

Key->mon

Value->40

echo $forecast["Tue"]; // outputs 47

echo $forecast["Thu"]; // outputs 40

Consider an array to be a dictionary or hash map. These types of arrays in

PHP are generally referred to as associative arrays.

to access an element in an associative array, you simply use the key value

rather than an index:

echo $forecast["Wed"]; // this will output 52

Multidimensional Arrays

PHP also supports multidimensional arrays.

$month = array

(

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri")

);

echo $month[0][3]; // outputs Thu

$cart = array();

$cart[] = array("id" => 37, "title" =>"Burial at Ornans",

"quantity" => 1);

$cart[] = array("id" => 345, "title" =>"The Death of Marat",

"quantity" => 1);

$cart[] = array("id" => 63, "title" =>"Starry Night", "quantity" => 1);

echo $cart[2]["title"]; // outputs Starry Night

listing 9.1 Multidimensional arrays

Iterating through an Array

One of the most common programming tasks that you will perform with an

array is to iterate through its contents.

// while loop

$i=0;

while ($i < count($days)) {

echo $days[$i] . "
";

$i++;

}

// do while loop

$i=0;

do {

echo $days[$i] . "
";

$i++;

} while ($i < count($days));

// for loop

for ($i=0; $i<count($days); $i++) {

echo $days[$i] . "
";

}

Code: Iterating through an array using while, do while, and for loops

Output the content of the $days array using the built-in function count()

For an associative array, the foreach loop and illustrated for the $forecast array

// foreach: iterating through the values

foreach ($forecast as $value) {

echo $value . "
";

}

// foreach: iterating through the values AND the keys

foreach ($forecast as $key => $value) {

echo "day" . $key . "=" . $value;

}

Adding and Deleting Elements

In PHP, arrays are dynamic, that is, they can grow or shrink in size. An

element can be added to an array simply by using a key/index that hasn’t been

used, as shown below:

$days[5] = "Sat";

Since there is no current value for key 5, the array grows by one, with the new

key/value pair added to the end of our array. If the key had a value already, the

same style of assignment replaces the value at that key. As an alternative to

specifying the index, a new element can be added to the end of any array using

the following technique:

$days[] = "Sun";

$days = array("Mon","Tue","Wed","Thu","Fri");

$days[7] = "Sat";

print_r($days);

What will be the output of the print_r()? It will show that our array now

contains the following:

Array ([0] => Mon [1] => Tue [2] => Wed [3] => Thu [4] => Fri [7] => Sat)

Referencing $days[6], for instance, it will return a NULL value, which is a

special PHP value that represents a variable with no value. You can also create

“gaps” by explicitly deleting array elements using the unset() function,

$days = array("Mon","Tue","Wed","Thu","Fri");

unset($days[2]);

unset($days[3]);

print_r($days); // outputs: Array ([0] => Mon [1] => Tue [4] => Fri)

$days = array_values($days);

print_r($days); // outputs: Array ([0] => Mon [1] => Tue [2] => Fri)

you can remove “gaps” in arrays (which really are just gaps in the index keys)

using the array_values() function, which reindexes the array numerically.

Checking If a Value Exists

To check if a value exists for a key, you can therefore use the isset() function,

which returns true if a value has been set, and false otherwise.

$oddKeys = array (1 =>"hello", 3 =>"world", 5 =>"!");

if (isset($oddKeys[0])) {

// The code below will never be reached since $oddKeys[0] is not set!

echo "there is something set for key 0";

}

if (isset($oddKeys[1])) {

// This code will run since a key/value pair was defined for key 1

echo "there is something set for key 1, namely ". $oddKeys[1];

}

Array Sorting

There are many built-in sort functions, which sort by key or by value. To sort

the $days array by its values you would simply use:

sort($days);

As the values are all strings, the resulting array would be:

Array ([0] => Fri [1] => Mon [2] => Sat [3] => Sun [4] => Thu[5] => Tue [6] => Wed)

However, such a sort loses the association between the values and the keys!

A better sort, one that would have kept keys and values associated together, is:

asort($days);

The resulting array in this case is:

Array ([4] => Fri [0] => Mon [5] => Sat [6] => Sun [3] => Thu[1] => Tue [2] => Wed)

More Array Operations

array_keys($someArray): This method returns an indexed array with the values

being the keys of $someArray.

For example, print_r(array_keys($days)) outputs

Array ([0] => 0 [1] => 1 [2] => 2 [3] => 3 [4] => 4)

■ array_values($someArray): Complementing the above array_keys()function, this

function returns an indexed array with the values being the values of

$someArray.

For example, print_r(array_values($days)) outputs

Array ([0] => Mon [1] => Tue [2] => Wed [3] => Thu [4] => Fri)

■ array_rand($someArray, $num=1): Often in games or widgets you want to select a

random element in an array. This function returns as many random keys as are

requested. If you only want one, the key itself is returned; otherwise, an array

of keys is returned.

For example, print_r(array_rand($days,2)) might output:

Array (3, 0)

■ array_walk($someArray, $callback, $optionalParam): This method is extremely

powerful. It allows you to call a method ($callback), for each value in $someArray.

The $callback function typically takes two parameters, the value first, and the

key second. An example that simply prints the value

of each element in the array is shown below.

$someA = array("hello", "world");

array_walk($someA, "doPrint");

function doPrint($value,$key){

echo $key . ": " . $value;

}

 in_array($needle, $haystack): This method lets you search array $haystack

for a value ($needle). It returns true if it is found, and false otherwise.

 shuffle($someArray): This method shuffles $someArray. Any existing keys are

removed and $someArray is now an indexed array if it wasn’t already.

2(a) Explain selectors in JQuery with examples.
jQuery Selectors

Basic Selectors

The four basic selectors were defined, and include the universal selector, class selectors, id

selectors, and elements selectors. To review:

■ $("*") Universal selector matches all elements (and is slow).

■ $("tag") Element selector matches all elements with the given element name.

■ $(".class") Class selector matches all elements with the given CSS class.

■ $("#id") Id selector matches all elements with a given HTML id attribute.

For example, to select the single <div>element with id="grab"you would write:

var singleElement = $("#grab");

To get a set of all the <a>elements the selector would be:

var allAs = $("a");

These selectors are powerful enough that they can replace the use of getElementById() entirely.

Attribute Selector

An attribute selector provides a way to select elements by either the presence of an element

attribute or by the value of an attribute.

[10] CO

5
L2

A list of sample CSS attribute selectors was given in Chapter 3 (Table 3.4), but to jog your memory

with an example, consider a selector to grab all elements with an src attribute beginning with

/artist/ as:

var artistImages = $("img[src^='/artist/']");

Recall that you can select by attribute with square brackets ([attribute]), specify a value with an equals

sign ([attribute=value]) and search for a particular value inthe beginning, end, or anywhere inside a

string with ^, $, and * symbols respectively.

([attribute^=value], [attribute$=value], [attribute*=value]).

Pseudo-Element Selector

Pseudo-elements are special elements, which are special cases of regular ones. these pseudo-

element selectors allow you to append to any selector using the colon and one of :link, :visited, :focus,

:hover,:active, :checked, :first-child, :first-line, and :first-letter.

These selectors can be used in combination with the selectors presented above, or alone. Selecting

all links that have been visited, for example, would be specified with:

var visitedLinks = $("a:visited");

Contextual Selector

Another powerful CSS selector included in jQuery’s selection mechanism is the contextual

selectors introduced in Chapter 3. These selectors allowed you to specify elements with certain

relationships to one another in your CSS. These relationships included descendant (space), child

(>), adjacent sibling (+), and general sibling (~).To select all <p>elements inside of <div>elements

you would write

 var para = $("div p");

Content Filters

The content filter is the only jQuery selector that allows you to append filters to all ofthe selectors

you’ve used thus far and match a particular pattern. You can select elements that have a particular

child using :has(), have no children using :empty, or match a particular piece of text with :contains().

Consider the following example:

var allWarningText = $("body *:contains('warning')");

var allWarningText = $("body *:contains('warning')");

It will return a list of all the DOM elements with the word warning inside of them. You might

imagine how we may want to highlight those DOM elements by coloring the background red as

shown in Figure 15.5 with one line of code:

 $("body *:contains('warning')").css("background-color", "#aa0000");

Form Selectors

Since form HTML elements are well known and frequently used to collect and transmit data, there

are jQuery selectors written especially for them. These selectors, listed in Table 15.1, allow for

quick access to certain types of field as well as fields in certain states. attributes like the href attribute

of an <a>tag, the src attribute of an , or the class attribute of most elements. In jQuery we can

both set and get an attribute value by using the attr() method on any element from a selector. This

function takes a parameter to specify which attribute, and the optional second parameter is the value

to set it to. If no second parameter is passed, then the return value of the call is the current value of

the attribute. Some example usages are:

// var link is assigned the href attribute of the first <a> tag

var link = $("a").attr("href");

// change all links in the page to http://funwebdev.com

$("a").attr("href","http://funwebdev.com");

// change the class for all images on the page to fancy

$("img").attr("class","fancy");

3(a)

Explain super global array FILES with examples.

$_FILES Array

 The $_FILES associative array contains items that have been

uploaded to the current script. The <input type="file"> element is used to

create the user interface for uploading a file from the client to the server.

The user interface is only one part of the uploading process. A server

script must process the upload file(s) in some way; the $_FILES array

helps in this process.

HTML Required for File Uploads

To allow users to upload files, there are some specific things you must

do:

■ First, you must ensure that the HTML form uses the HTTP POST

method, since transmitting a file through the URL is not possible.

■ Second, you must add the enctype="multipart/form-data" attribute to

the HTML form that is performing the upload so that the HTTP request

can submit multiple pieces of data (namely, the HTTP post body, and the

HTTP file attachment itself).

■ Finally you must include an input type of file in your form. This will

show up with a browse button beside it so the user can select a file from

their computer to be uploaded.

<form enctype='multipart/form-data' method='post'>

<input type='file' name='file1' id='file1' />

<input type='submit' />

</form>

[10] CO

4
L2

Handling the File Upload in PHP

The corresponding PHP file responsible for handling the upload will

utilize the superglobal $_FILES array. This array will contain a key=value

pair for each file uploaded in the post. The key for each element will be

the name attribute from the HTML form, while the value will be an array

containing information about the file as well as the file itself. The keys in

that array are the name, type, tmp_name, error, and size.

The values for each of the keys are described below.

■ name is a string containing the full file name used on the client machine,

including any file extension. It does not include the file path on the

client’s machine.

■ type defines the MIME type of the file. This value is provided by the

client browser and is therefore not a reliable field.

■ tmp_name is the full path to the location on your server where the file is

being temporarily stored. The file will cease to exist upon termination of

the script, so it should be copied to another location if storage is required.

■ error is an integer that encodes many possible errors and is set to

UPLOAD_ERR_OK (integer value 0) if the file was uploaded successfully.

■ size is an integer representing the size in bytes of the uploaded file.

Checking for Errors

For every uploaded file, there is an error value associated with it in the

$_FILES array. The error values are specified using constant values, which

resolve to integers. The value for a successful upload is UPLOAD_ERR_OK,

and should be looked for before proceeding any further.

Error Code Integer Meaning

UPLOAD_ERR_OK 0 Upload was successful.

UPLOAD_ERR_INI_SIZE 1 The uploaded file exceeds the

upload_max_filesize directive

 in php.ini.

UPLOAD_ERR_FORM_SIZE 2 The uploaded file exceeds the

max_file_size directive that

 was specified in the HTML form.

UPLOAD_ERR_PART IAL 3 The file was only partially

uploaded.

UPLOAD_ERR_NO_FILE 4 No file was uploaded. Not

always an error,since the user

 may have simply not chosen a file for this field.

UPLOAD_ERR_NO_TMP_DIR 6 Missing the temporary folder.

UPLOAD_ERR_CANT_WRITE 7 Failed to write to disk.

UPLOAD_ERR_EXTENSION 8 A PHP extension stopped the

upload.

foreach ($_FILES as $fileKey => $fileArray) {

if ($fileArray["error"] != UPLOAD_ERR_OK) { // error

echo "Error: " . $fileKey . " has error" . $fileArray["error"]

. "
";

}

else { // no error

echo $fileKey . "Uploaded successfully ";

}

}

File Size Restrictions

Some scripts limit the file size of each upload. There are three main

mechanisms for maintaining uploaded file size restrictions:

 HTML in the input form

 JavaScript in the input form

 PHP coding

HTML in the input form

This mechanism is to add a hidden input field before any other input

fields in your HTML form with a name of MAX_FILE_SIZE. This

technique allows your

php.ini maximum file size to be large, while letting some forms override

that large

limit with a smaller one.

<form enctype='multipart/form-data' method='post'>

<input type="hidden" name="MAX_FILE_SIZE" value="1000000" />

<input type='file' name='file1' />

<input type='submit' />

</form>

JavaScript in the input form

The more complete client-side mechanism to prevent a file from

uploading if it

is too big is to prevalidate the form using JavaScript.

<script>

var file = document.getElementById('file1');

var max_size = document.getElementById("max_file_size").value;

if (file.files && file.files.length ==1){

if (file.files[0].size > max_size) {

alert("The file must be less than " + (max_size/1024) + "KB");

e.preventDefault();

}

}

</script>

PHP coding

This mechanism is to add a simple check on the server side.

$max_file_size = 10000000;

foreach($_FILES as $fileKey => $fileArray) {

if ($fileArray["size"] > $max_file_size) {

echo "Error: " . $fileKey . " is too big";

}

printf("%s is %.2f KB", $fileKey, $fileArray["size"]/1024);

}

Limiting the Type of File Upload

Even if the upload was successful and the size was within the

appropriate limits, the user to upload an image and they uploaded a

Microsoft Word document? You might also want to limit the

uploaded image to certain image types, such as jpg and png, while

disallowing bmp and others.

$validExt = array("jpg", "png");

$validMime = array("image/jpeg","image/png");

foreach($_FILES as $fileKey => $fileArray){

$extension = end(explode(".", $fileArray["name"]));

if (in_array($fileArray["type"],$validMime) && in_array($extension,

$validExt)) {

echo "all is well. Extension and mime types valid";

}

else {

echo $fileKey." Has an invalid mime type or extension";

}

}

Moving the File

With all of our checking completed, you may now finally want to move

the temporary file to a permanent location on your server. Typically, you

make use of the PHP function move_uploaded_file(), which takes in the

temporary file location and the file’s final destination. This function will

only work if the source file exists and if the destination location is

writable by the web server (Apache). If there is a problem the function

will return false, and a warning may be output.

$fileToMove = $_FILES['file1']['tmp_name'];

$destination = "./upload/" . $_FILES["file1"]["name"];

if (move_uploaded_file($fileToMove,$destination)) {

echo "The file was uploaded and moved successfully!";

}

else {

echo "there was a problem moving the file";

}

4(a)

Explain super global array $_GET and $_POST.

The $_GET and $_POST arrays are the most important super global variables

in PHP since they allow the programmer to access data sent by the client in a

query string.

[10] CO

4
L2

An HTML form (or an HTML link) allows a client to send data to the server.

That data is formatted such that each value is associated with a name defined

in the form. If the form was submitted using an HTTP GET request, then the

resulting URL will contain the data in the query string. PHP will populate the

superglobal $_GET array using the contents of this query string in the URL.

If the form was sent using HTTP POST, then the values would not be visible

in the URL, but will be sent through HTTP POST request body. From the PHP

programmer’s perspective, almost nothing changes from a GET data post

except that those values and keys are now stored in the $_POST array.

Determining If Any Data Sent

PHP that you will use the same file to handle both the display of a form as

well as the form input. For example, a single file is often used to display a

login form to the user, and that same file also handles the processing of the

submitted form data, as shown in Figure 9.8. In such cases you may want to

know whether any form data was submitted at all using either POST or GET.

In PHP, there are several techniques to accomplish this task. First, you can

determine if you are responding to a POST or GET by checking the

$_SERVER['REQUEST_METHOD'] variable.

To check if any of the fields are set. To do this you can use the isset() function

in PHP to see if there is anything set for a particular query string parameter.

<!DOCTYPE html>

<html>

<body>

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST") {

if (isset($_POST["uname"]) && isset($_POST["pass"])) {

// handle the posted data.

echo "handling user login now ...";

echo "... here we could redirect or authenticate ";

echo " and hide login form or something else";

}

}?>

<h1>Some page that has a login form</h1>

<form action="samplePage.php" method="POST">

Name <input type="text" name="uname"/>

Pass <input type="password" name="pass"/>

<input type="submit">

</form>

</body>

</html>

5(a) How cookies and session work? Give examples.

Cookies

Cookies are a client-side approach for persisting state information. They are name=value pairs that

are saved within one or more text files that are managed by the browser. These pairs accompany

both server requests and responses within the HTTP header. While cookies cannot contain viruses,

third-party tracking cookies have been a source of concern for privacy advocates.

keep track of whether a user has logged into a site.

How Do Cookies Work?

While cookie information is stored and retrieved by the browser, the information in a cookie travels

within the HTTP header. Figure 13.6 illustrates how cookies work. There are limitations to the

amount of information that can be stored in a cookie (around 4K) and to the number of cookies for a

domain (for instance, Internet Explorer 6 limited a domain to 20 cookies).HTTP cookies can also

expire. That is, the browser will delete cookies that are beyond their expiry date (which is a

configurable property of a cookie). If a cookie does not have an expiry date specified, the browser

will delete it when the browser closes (or the next time it accesses the site). For this reason, some

commentators will say that there are two types of cookies session cookies and persistent cookies. A

session cookie has no expiry stated and thus will be deleted at the end of the user browsing session.

Persistent cookies have an expiry date specified; they will persist in the browser’s cookie file until

the expiry date occurs, after which they are deleted.

Using Cookies

[10] CO

2
L2

Like any other web development technology, PHP provides mechanisms for writing and reading

cookies. Cookies in PHP are created using the setcookie() function and are retrieved using the

$_COOKIES superglobal associative array.Below example illustrates the writing of a persistent cookie

in PHP

<?php

// add 1 day to the current time for expiry time

$expiryTime = time()+60*60*24;

// create a persistent cookie

$name = "Username";

$value = "Ricardo";

setcookie($name, $value, $expiryTime);

?>

The setcookie() function also supports several more parameters, which further customize the new

cookie. You can examine the online official PHP documentation for more information. The below

example illustrates the reading of cookie values. Notice that when we read a cookie, we must also

check to ensure that the cookie exists. In PHP, if the cookie has expired (or never existed in the first

place), then the client’s browser would not send anything, and so the $_COOKIE array would be

blank.

<?php

if(!isset($_COOKIE['Username'])) {

//no valid cookie found

}

else {

echo "The username retrieved from the cookie is:";

echo $_COOKIE['Username'];

}

?>

Session State

Session state is a server-based state mechanism that lets web applications store and retrieve objects

of any type for each unique user session. That is, each browser session has its own session state

stored as a serialized file on the server, which is deserialized and loaded into memory as needed for

each request

Because server storage is a finite resource, objects loaded into memory are released when the

request completes, making room for other requests and their session objects. This means there can

be more active sessions on disk than in memory at any one time. Session state is ideal for storing

more complex (but not too complex . . . more on that later) objects or data structures that are

associated with a user session. The classic example is a shopping cart. While shopping carts could

be implemented via cookies or query string parameters, it would be quite complex and cumbersome

to do so.

It can be accessed via the $_SESSION variable, but unlike the other superglobals, you have to take

additional steps in your own code in order to use the $_SESSION superglobal To use sessions in a

script, you must call the session_start() function at the beginning of the script as shown in Listing 13.5.

<?php

session_start();

if (isset($_SESSION['user'])) {

// User is logged in

}

else {

// No one is logged in (guest)

}

?>
In this example, we differentiate a logged-in user from a guest by checking for the existence of the

$_SESSION['user'] variable. Session state is typically used for storing information that needs to be

preserved across multiple requests by the same user. Since each user session has its own session

state collection, it should not be used to store large amounts of information because this will

consume very large amounts of server memory as the number of active sessions increase. As well,

since session information does eventually time out, one should always check if an item retrieved

from session state still exists before using the retrieved object. If the session object does not yet

exist (either because it is the first time the user has requested it or because the session has timed

out), one might generate an error, redirect to another page, or create the required object using the

lazy initialization approach as shown in Listing 13.6. In this example ShoppingCart is a user defined

class. Since PHP sessions are serialized into files, one must ensure that any

listing 13.5 Accessing session state

<?php

include_once("ShoppingCart.class.php");

session_start();

// always check for existence of session object before accessing it

if (!isset($_SESSION["Cart"])) {

//session variables can be strings, arrays, or objects, but

// smaller is better

$_SESSION["Cart"] = new ShoppingCart();

}

$cart = $_SESSION["Cart"];

?>

How Does Session State Work?

The first thing to know about session state is that it works within the same HTTP context as any

web request. The server needs to be able to identify a given HTTP request with a specific user

request. Since HTTP is stateless, some type of user/session identification system is needed.

In PHP, this is a unique 32-byte string that is by default transmitted back and forth between the user

and the server via a session cookie as shown in Figure 13.9.

For a brand new session, PHP assigns an initially empty dictionary-style collection that can be used

to hold any state values for this session. When the request processing is finished, the session state is

saved to some type of state storage mechanism, called a session state provider (discussed in next

section).Finally, when a new request is received for an already existing session; the session’s

dictionary collection is filled with the previously saved session data from the session state provider.

6(a) How do you achieve encapsulation in PHP. Give examples.

Data Encapsulation

Perhaps the most important advantage to object-oriented design is the

possibility of encapsulation, which generally refers to restricting access to an

object’s internal components. Another way of understanding encapsulation is:

it is the hiding of an object’s implementation details.

A properly encapsulated class will define an interface to the world in the form

of its public methods, and leave its data, that is, its properties, hidden (that is,

private). This allows the class to control exactly how its data will be used.

 If a properly encapsulated class makes its properties private, then how do you

access them? The typical approach is to write methods for accessing and

modifying properties rather than allowing them to be accessed directly. These

methods are commonly called getters and setters (or accessors and mutators).

Some development environments can even generate getters and setters

automatically.

 A getter to return a variable’s value is often very straightforward and should

not modify the property. It is normally called without parameters, and returns

the property from within the class. For instance:

 public function getFirstName()

[05] CO

4
L2

 {

 return $this->firstName;

 }

Setter methods modify properties, and allow extra logic to be added to prevent

properties from being set to strange values. For example, we might only set a

date property if the setter was passed an acceptable date:

The below example demonstrates how the Artist class could be used and

tested.

6(b) Write short notes on JSON with examples.

JSON

JSON stands for JavaScript Object Notation; its use is not limited to JavaScript. It provides a more

concise format than XML to represent data. It was originally designed to provide a lightweight

serialization format to represent objects in JavaScript. While it doesn’t have the validation and

readability of XML, it has the advantage of generally requiring significantly fewer bytes to

represent data than XML, which in the web context is quite significant.

Like XML, JSON is a data serialization format. That is, it is used to represent object data in a text

format so that it can be transmitted from one computer to another. Many REST web services encode

their returned data in the JSON data format instead of XML.

[05]
CO

5

L2

Just like XML, JSON data can be nested to represent objects within objects. In general JSON data

will have all white space removed to reduce the number of bytes traveling across the network.

Using JSON in JavaScript

Since the syntax of JSON is the same used for creating objects in JavaScript, it is easy to make use

of the JSON format in JavaScript:

<script>

var a = {"artist": {"name":"Manet","nationality":"France"}};

alert(a.artist.name + "" + a.artist.nationality);

</script>

JSON information will be contained within a string, and the JSON.parse()function can be used to

transform the string containing the JSON data into a JavaScript object:

var text = '{"artist": {"name":"Manet","nationality":"France"}}';

var a = JSON.parse(text);

alert(a.artist.nationality);

The jQuery library also provides a JSON parser that will work with all browsers (the JSON.parse()

function is not available on older browsers):

var artist = jQuery.parseJSON(text);

JavaScript also provides a mechanism to translate a JavaScript object into a JSON string:

var text = JSON.stringify(artist);

Using JSON in PHP

PHP comes with a JSON extension and as of version 5.2 of PHP; the JSON extension is bundled

and compiled into PHP by default. Converting a JSON string into a PHP object is quite

straightforward:

<?php

// convert JSON string into PHP object

$text = '{"artist": {"name":"Manet","nationality":"France"}}';

$anObject = json_decode($text);

echo $anObject->artist->nationality;

// convert JSON string into PHP associative array

$anArray = json_decode($text, true);

echo $anArray['artist']['nationality'];

?>

json_decode() function can return either a PHP object or an associative array. Since JSON data is

often coming from an external source, one should always check for parse errors before using it,

which can be done via the json_last_error() function:

<?php

// convert JSON string into PHP object

$text = '{"artist": {"name":"Manet","nationality":"France"}}';

$anObject = json_decode($text);

// check for parse errors

if (json_last_error() == JSON_ERROR_NONE) {

echo $anObject->artist->nationality;

}

?>

To go the other direction (i.e., to convert a PHP object into a JSON string), you can use the

json_encode() function.

// convert PHP object into a JSON string

$text = json_encode($anObject);

7(a) Write short notes on AJAX with examples.

AJAX

Asynchronous JavaScript with XML (AJAX) is a term used to describe a paradigm that allows a

web browser to send messages back to the server without interrupting the flow of what’s being

shown in the browser. This makes use of a browser’s multi-threaded design and lets one thread

handle the browser and interactions while other threads wait for responses to asynchronous

requests.

Responses to asynchronous requests are caught in JavaScript as events. The events can

subsequently trigger changes in the user interface or make additional requests. This differs from the

typical synchronous requests we have seen thus far, which require the entire web page to refresh in

response to a request. Another way to contrast AJAX and synchronous JavaScript is to consider a

webpage that displays the current server time as shown in the below figure.

[05]
CO

5

L2

If implemented synchronously, the entire page has to be refreshed from the server just to

update the displayed time. During that refresh, the browser enters a waiting state, so the user

experience is interrupted (yes, you could implement a refreshing time using pure JavaScript, but for

illustrative purposes, imagine it’s essential to see the server’s time).

In contrast, consider the very simple asynchronous implementation of the server time, where an

AJAX request updates the server time in the background as illustrated in Figure

Making Asynchronous Requests

jQuery provides a family of methods to make asynchronous requests. Consider for instance the very

simple server time page described above. If the URL currentTime.php returns a single string and you

want to load that value asynchronously

into the <div id="timeDiv">element, you could write:

$("#timeDiv").load("currentTime.php");

Making a request to vote for option C in a poll could easily be encoded as a URL request GET

/vote.php?option=C. However, rather than submit the whole page just to vote in the poll, jQuery’s $.get()

method sends that GET request asynchronously as follows:

$.get("/vote.php?option=C");

Note that the $ symbol is followed by a dot. Recall that since $ is actually shorthand for jQuery(), the

above method call is equivalent tojQuery().("/vote.php?option=C");

7(b) Explain serialization with examples.

Serialization

Serialization is the process of taking a complicated object and reducing it down to zeros and ones

for either storage or transmission. Later that sequence of zeros and ones can be reconstituted into

the original object.

[05]
CO

5

L2

In PHP objects can easily be reduced down to a binary string using the serialize() function. The

resulting string is a binary representation of the object and therefore may contain unprintable

characters. The string can be reconstituted back into an object using the unserialize() method. While

arrays, strings, and other primitive types will be serializable by default, classes of our own creation

must implement the Serializable interface shown below. Which requires adding implementations for

serialize() and unserialize() to any class that implements this interface.

interface Serializable {

/* Methods */

public function serialize();

public function unserialize($serialized);

}

The example shows how the Artist class must be modified to implement the Serializable interface by

adding the implements keyword to the class definition and adding implementations for the two

methods.

listing 13.4 Artist class modified to implement the Serializable interface

class Artist implements Serializable {

//...

// Implement the Serializable interface methods

public function serialize() {

// use the built-in PHP serialize function

return serialize(

array("earliest" =>self::$earliestDate,

"first" => $this->firstName,

"last" => $this->lastName,

"bdate" => $this->birthDate,

"ddate" => $this->deathDate,

"bcity" => $this->birthCity,

"works" => $this->artworks

);

);

}

public function unserialize($data) {

// use the built-in PHP unserialize function

$data = unserialize($data);

self::$earliestDate = $data['earliest'];

$this->firstName = $data['first'];

$this->lastName = $data['last'];

$this->birthDate = $data['bdate'];

$this->deathDate = $data['ddate'];

$this->birthCity = $data['bcity'];

$this->artworks = $data['works'];

}

//...

}

If the data above is assigned to $data, then the following line will instantiate a new object identical to

the original:

$picassoClone = unserialize($data);

Application of Serialization

Since each request from the user requires objects to be reconstituted, using serialization to store and

retrieve objects can be a rapid way to maintain state between requests. At the end of a request you

store the state in a serialized form, and then the next request would begin by deserializing it to

reestablish the previous state.

8(a) How do you pass information through URL and query string?

Passing Information via Query Strings

A web page can pass query string information from the browser to the server using one of the two

methods: a query string within the URL (GET) and a query string within the HTTP header (POST).

Figure 13.4 reviews these two different approaches.

4.3 Passing Information via the URL Path

While query strings are a vital way to pass information from one page to another, they do have a

drawback. The URLs that result can be long and complicated. While for many users this is not that

important, many feel that for one particular type of user, query strings are not ideal.

[05] CO

4
L2

While there is some dispute about whether dynamic URLs (i.e., ones with query string parameters)

or static URLs are better from a search engine result optimization (or SEO for search engine

optimization) perspective, the consensus is that static URLs do provide some benefits with search

engine result rankings. Many factors affect a page’s ranking in a search engine, but the appearance

of search terms within the URL does seem to improve its relative position.

Another benefit to static URLs is that users tend to prefer them. As we have seen, dynamic URLs

(i.e., query string parameters) are a pretty essential part of web application development. How can

we do without them? The answer is to rewrite the dynamic URL into a static one (and vice versa).

This process is commonly called URL rewriting.

We can try doing our own rewriting. Let us begin with the following URL with its query string

information:

www.somedomain.com/DisplayArtist.php?artist=16

One typical alternate approach would be to rewrite the URL to:

www.somedomain.com/artists/16.php

Notice that the query string name and value have been turned into path names.

One could improve this to make it more SEO friendly using the following:

www.somedomain.com/artists/Mary-Cassatt

The mod_rewrite module uses a rule-based rewriting engine that utilizes Perl compatible regular

expressions to change the URLs so that the requested URL can be mapped or redirected to another

URL internally.

8(b) Write a PHP program to create a class STUDENT with the following specification.

Data members : Name, Roll number, Average marks

Member function : Read(getters) and write (setters)

Use the above specification to read and print the information of 2 students.

<?php

class MyClass

{

 /* Private attribute, cannot be accessed directly */

 private $name;

 /* Constructor */

 public function __construct()

 {

 $this->name = '';

 }

 /* Getter function to read the attribute */

 public function get_name()

 {

 return $this->name;

 }

 /* Setter function to change the attribute */

 public function set_name($new_name)

[05] CO

4
L3

http://www.somedomain.com/artists/Mary-Cassatt

 {

 if ($this->is_valid_name($new_name))

 {

 $this->name = $new_name;

 }

 }

 /* Checks if the name is valid */

 private function is_valid_name($name)

 {

 $valid = TRUE;

 /* Just checks if the string length is between 3 and 16 */

 if (mb_strlen($name) < 3)

 {

 $valid = FALSE;

 }

 else if (mb_strlen($name) > 16)

 {

 $valid = FALSE;

 }

 return $valid;

 }

}

$mc = new MyClass();

$mc->set_name('Alex');

echo $mc->get_name();

?>

