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Answer any FIVE FULL Questions NARKS olT
1(a) Explain Naive bayes classification with example data given below. Classify the [5+5] CO3 L3
following instance <Outlook=Sunny, Temperature=Cool, Humidity=High,
Wind=Strong>
Day Outlook Temperature Humidity Wind PlayTenunis CO2 L2
D1 Sunny Hot High Wealk No
D2 Sunny Hot High  Stroung No
D3 Overcast Hot High Wealk Yes
D4 Rain Mild High Weal Yes
D5 Rain Cool Normal  Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D&  Suunny Mild High Weal No
D9 Sunny Cool Normal  Weak Yes
D10  Rain Mild Normal Weak Yes
D11 Sununy Mild Normal Strong Yes
D12 Ovwercast Mild High  Stroug Yes
D13 Overcast Hot Normal  Weak Yes
D14  Rain Mild High  Stroug No
2 (a) Write about [5+5] CO2 L3
) Estimating hypothesis accuracy
i) Binomial distribution
3(a) How to identify difference in error of two hypotheses. Discuss the method of [2+4+4]CO2 L3
comparing two algorithms. Justify with paired-t tests methods.
4 (a) Discuss locally weighted regression and explain locally weighted linear [10] CO1 L2
regression
5 (a) Describe K-Nearest Neighbor learning algorithm for continuous valued target [5+4+1]CO3 L2
functions and discrete valued target functions. Discuss one major drawback
of this algorithm and how it can be corrected.
6 (a) What is reinforcement learning? Explain how an agent interacts with its [1+4+5]CO1 L2
environment. Explain the learning task.
7 (a) Explain the Q function and Q learning algorithm. [3+7] CO3 L2
8 (a) Explain Bayesian belief networks with an example. [5] COzZ L2
(b) Define the following terms with respect to K- Nearest Neighbor [2+2+1]CO3 L1

I. Regression
ii. Residual
ii. Kernel function
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1. Naive bayes classifier

The naive Bayes classifier applies to leaming tasks where each instance x
is described by a conjunction of atiribute values and where the target function
f(x) can take on any value from some finite set V. A set of training examples of
the target function is provided, and a new instance is presented, described by the
tuple of attribute values {a;,a:...a,). The learner is asked to predict the target
value, or classification, for this new instance.

The Bayesian approach to classifying the new instance is to assign the most
probable target value, vy p, given the attribute values {ay, az .. .a,) that describe
the instance.

Uaap = argmax Plv;lap, az...as)
(1

We can use Bayes theorem to rewrite this expression as

Play, az...aqvi)Plwy)
v = max
MAR NEEV P[ﬂhdz,..a.)

= argmax P(ay,az ... a,|v; ) Plv;)

'I.llrE'r'I

The naive Bayes classifier is based on the simplifying assumption that the
attribute values are conditionally independent given the target value. In other
words, the assumption is thal given the target value of the instance, the probability
of observing the conjunction a;, a;...a, is just the product of the probabilities
for the individual attributes: Piaj,az...as|v;) = []; Plailv;). Substituting this
into Equation (6.19), we have the approach used by the naive Bayes classifier.

Naive Bayes classifier:

Vg = argmax P[U,r}ﬂ Piailu) (6.20)
eV T

i)

P{PlayT ennis = yes) =9/14 = 64
P(PlayT ennis = no) = 5/14 = .36

P(Wind = sirong|PlayTennis = yes) =3/9 = 33
P(Wind = sirong|PlayTennis = no) = 3/5 = 60



Pives) Pisunny|ves) Picool|ves) Plhigh|ves) Pistrong|ves) = 0053
Pino) Plsunny|lno) Plcoollno) Plhighlno) Pistronglno) = 0206
Probability of(No) > Probability(Yes), Hence PlayTennis= No

2.a) i) Estimating hypothesis accuracy
1. When evaluating a learned hypothesis we are most often interested in
estimating the accuracy with which it will classify future instances.
2. We would like to know the probable error in this accuracy estimate.

3. Evaluating the difference of the hypothesis to know how general they are.
Sample Error and True Error:
The sample error of a hypothesis with respect to some sample S of instances

drawn from X is the fraction of S that it misclassifies:

Definition: The sample error (denoted errors(h)) of hypothesis A with respect to
target function f and data sample S is

1
s errors(h) = — Z&(f(x), h(x))

x€S

Where n is the number of examples in S, and the quantity §(f(x), A(x)) is 1 if
f(x) $# h(x), and O otherwise.

The true error of a hypothesis is the probability that it will misclassify a single
randomly drawn instance from the distribution D.

Definition: The true error (denoted errorp(h)) of hypothesis » with respect to target
function f and distribution D, is the probability that » will misclassify an instance
drawn at random according to D.

errorp(h) = ,l:%[f (x) # h(x)]

Here the notation P% denotes that the probability is taken over the instance
Xe
distribution D.

Confidence Intervals for Discrete- Valued Hypotheses

More specifically, suppose we wish to estimate the true error for some discrete-
valued hypothesis 4, based on its observed sample error over a sample S, where

o the sample S contains » examples drawn independent of one another, and
independent of h, according to the probability distribution D

e n>30
e hypothesis A commits r errors over these n examples (i.e., errorg(h) =r/n).



Under these conditions, statistical theory allows us to make the following asser-
tions:

1. Given no other information, the most probable value of errorp () is errors(h)

2. With approximately 95% probability, the true error errorp(h) lies in the Or
interval

errors(h) £ 1.96‘/ errors(h)(1 n— errors(h))

The repeated sample of 40 examples, expect some variation in the sample

error.With approximately 95% of probability reason, the errorp(h) lies in the
interval

errors(h)(1 — errors(h))

errors(h) £ 1.96\/

n

=0.30+1.96v22%7
40

=0.3+1.96 x 0.072
=.30+0.14

The above expression for the 95% confidence interval can be generalized to any desired
confidence level. The constant 1.96 is used in case we desire a 95% confidence interval.

A different constant, Zn, is used to calculate the N% confidence interval. The general
expression for approximate N% confidence intervals for errorp(h) is

errorg(h)(1 — errorg(h))
n
Zx - is chosen depending on the desired confidence level.

errors(h) £ ZN\/

2. ii) Binomial distribution

= A Binomial distribution gives the probability of observing r heads in a sample of n
independent coin tosses, when the probability of heads on a single coin toss is p.

n! r n—r
P(r) = S rr—— pr(1— p)

If the random variable X follows a Binomial distribution, then:
e The probability Pr(X = r) that X will take on the value r is given by P(r)
e The expected, or mean value of X, E[X], is

E[X]=np

e The variance of X, Var(X), is
Var(X) = np(1l — p)
e The standard deviation of X, oy, is

ox = +/np(l — p)



3. How to identify difference in error of two hypotheses. Discuss the method of
comparing two algorithms. Justify with paired-t tests methods.

If h1 and h2 are the two hypotheses, then the error between the hypotheses can be measured
as:

d = errors, (h)) — errors,(h2)

2 . errors, (h1)(1 —errors, (h1)) + errorg, (h2)(1 — errors,(h2))

R

ni na

- errors, (h1)(1 — errors, (1)) errors,(h2)(1 — errors,(h2))
dEzn ni + n2

Procedure for comparing two algorithms:

1. Partition the available data Dy into k disjoint subsets Tq, T3, ..., Tx of equal size, where this size
is at least 30.
2. Fori from 1 to k, do
use T; for the test set, and the remaining data for training set §;
e Si < (Dp—-Ti}
o Ry «— La(5)
® hg — Lg(5)
o & + errory;(ha) —errory (hg)
3. Return the value §, where

=

k
§= Za,- (T5.1)
i=1




Paired t-test is the method to statistically justify the comparison of two learning
methods:

e We are given the observed values of a set of independent, identically dis-
tributed random variables ¥;, ¥», ..., ¥i.

o We wish to estimate the mean g of the probability distribution governing
these Y;.

e The estimator we will use is the sample mean ¥

1 k
2%
i=1

Y

= |

This problem of estimating the distribution mean pz based on the sample mean
Y is quite general. For example, it covers the problem discussed earlier of using
errorg(h) to estimate errorp(h). (In that problem, the ¥; are 1 or 0 to indicate
whether h commits an error on an individual example from S, and errorp(h) is the
mean y of the underlying distribution.) The ¢ test, described by Equations (5.17)
and (5.18), applies to a special case of this problem—the case in which the
individual ¥; follow a Normal distribution.

The approximate N% confidence for estimation will be :

St ty i1 55 (5.17)

L
i
i

1 < .
D Zl:(a;- —8)? (5.18)

4. Discuss locally weighted regression and explain locally weighted linear regression

e The phrase "locally weighted regression" is called local because the function is
approximated based only on data near the query point, weighted because the
contribution of each training example is weighted by its distance from the query point,
and regression because this is the term used widely in the statistical learning community
for the problem of approximating real-valued functions.

* Given a new query instance xq4, the general approach in locally weighted regression is
to construct an approximation f that fits the training examples in the neighborhood
surrounding xq. This approximation is then used to calculate the value f(xq), which is
output as the estimated target value for the query instance.



Locally Weighted Linear Regression

¢ Consider locally weighted regression in which the target function f is approximated near
Xg4 using a linear function of the form

-

f(x) =wo+wiar(x) + - - - + wpay(x)

Where, a;(x) denotes the value of the i attribute of the instance x

s Derived methods are used to choose weights that minimize the squared error summed
over the set D of training examples using gradient descent

- %;(f(x) — f(x))?

Which led us to the gradient descent training rule

Aw; =1 ) (f&x) — fx)a;x)
xeD
Where, 1 is a constant learning rate

e Need to modify this procedure to derive a local approximation rather than a global one.
The simple way is to redefine the error criterion E to emphasize fitting the local training
examples. Three possible criteria are given below.

1. Minimize the squared error over just the k nearest neighbors:

1 -
Ey(xg) = 5 Z (fx) — f(x)? equ(1)

x€ k nearest nbrs of x4

2. Minimize the squared error over the entire set D of training examples, while
weighting the error of each training example by some decreasing function K of its
distance from xq :

: 1 A
Ex(x) = 5 ) (f() = f(0))* K@(xg, %)) equey

xeD
3. Combine 1 and 2:
1 a
E3(xg) = 5 ¥y (f@) — f(x))* K(d(xg, X)) equ@d)

x€ k nearest nbrs of x,

5. Describe K-Nearest Neighbor learning algorithm for continuous valued
target functions and discrete valued target functions. Discuss one major
drawback of this algorithm and how it can be corrected.



k- NEAREST NEIGHBOR LEARNING

® The most basic instance-based method is the K- Nearest Neighbor Learning. This
algorithm assumes all instances correspond to points in the n-dimensional space R".
e The nearest neighbors of an instance are defined in terms of the standard Euclidean
distance.
e Letan arbitrary instance x be described by the feature vector
((ai1(x), az(x), ......... , an(X))
Where, a.(x) denotes the value of the r'" attribute of instance x.

e Then the distance between two instances x; and x; is defined to be d(xi , x; )
Where,

d(x;, x)) = JZ(a,(x,-) - a,(x))?
r=]

Training algorithm:
e For each training example (x, f(x)), add the example to the list training examples
Classification algorithm:
o Given a query instance x, 10 be classified,
e Let xy ... x denote the & instances from training examples that arc nearest 10 xg
« Return

i
f(: ) « argmax v, f(x)
o o angmax )

where 3(a, b) = | if a = b and where 3(a, b) = 0 otherwise

The K- Nearest Neighbor aleorithm for approximation a real-valued target function is given
belDW f . !R"r —p ER

Training algorithm:
e For each training example (x, f(x)), add the example to the list training_examples

Classification algorithm:
e Given a query instance x,; to be classified,
e Let x;...x; denote the k instances from training..examples that are nearest to xg

e Return
f (xq) « ______Elef(xt}

Major drawback of KNN:

1. K-NN slow algorithm: K-NN might be very easy to implement but as dataset
grows efficiency or speed of algorithm declines very fast.

2. Curse of Dimensionality: KNN works well with small number of input variables
but as the numbers of variables grow K-NN algorithm struggles to predict the
output of new data point.

Correction to be done to overcome the drawbacks :

One interesting approach to overcoming this problem is to weight each attribute
differently when calculating the distance between two instances. This corresponds
to stretching the axes in the Euclidean space, shortening the axes that correspond to



less relevant attributes, and lengthening the axes that correspond to more relevant
attributes. The amount by which each axis should be stretched can be determined
automatically using a cross-validation approach.

6. What is reinforcement learning? Explain how an agent interacts with its
environment. Explain the learning task.

Reinforcement learning addresses the problem of learning control strategies
for autonomous agents. It assumes that training information is available in
the form of a real-valued reward signal given for each state-action transition.
The goal of the agent is to learn an action policy that maximizes the total

reward it will receive from any starting state.

Reinforcement Learning Problem

* Anagent interacting with its environment. The agent exists in an environment described
by some set of possible states S.

* Agent perform any of a set of possible actions A. Each time it performs an action a, in
some state s, the agent receives a real-valued reward r, that indicates the immediate value
of this state-action transition. This produces a sequence of states s, actions a;, and
immediate rewards ri as shown in the figure.

e The agent's task is to learn a control policy, r: § — A, that maximizes the expected sum
of these rewards, with future rewards discounted exponentially by their delay.

Agent
State Reward Action
Environment
apn 21 2
S ——————— 5] — ) ————
’0 ’1 = ’2

Goal: Learn to choose actions that maximize

P tYr +yzr:2+ ... » where 0 <y <I/

Learning task



In a Markov decision process (MDP) the agent can perceive a set S of distinct
states of its environment and has a set A of actions that it can perform. At each
discrete time step 7, the agent senses the current state s,, chooses a current action
ar, and performs it. The environment responds by giving the agent a reward r, =
r(s:, a;) and by producing the succeeding state 5,.; = 8(s,, a,). Here the functions
8 and r are part of the environment and are not necessarily known to the agent.
In an MDP, the functions é(s;, a;) and r(s,, ;) depend only on the current state
and action, and not on earlier states or actions. In this chapter we consider only
the case in which S and A are finite. In general, § and r may be nondeterministic
functions, but we begin by considering only the deterministic case.

7. Explain the Q function and Q learning algorithm.

Q Function :
The Q Function

The value of Evaluation function Q(s, a) is the reward received immediately upon executing
action a from state s, plus the value (discounted by y ) of following the optimal policy thereafter

O(s.a) =r(s, a)+yV*(8(s,a)) equ (4)
Rewrite Equation (3) in terms of Q(s, a) as
JT*(S) = argmax Q(s,a) equ (5)
a

Equation (5) makes clear, it need only consider each available action a in its current state s and
choose the action that maximizes Q(, a).

An Algorithm for Learning 0

e Learning the Q function corresponds to learning the optimal policy.

e The key problem is finding a reliable way to estimate training values for Q, given only
a sequence of immediate rewards r spread out over time. This can be accomplished
through iterative approximation

V*(s) = max (s, a')

Rewriting Equation

Q(s.a) = r(s,a) + y max Q((s, a), @)



Q learning algorithm
For each s, a initialize the table entry Q(s, a) to zero.

Observe the current state s
Do forever:

e Select an action ¢ and execute it

¢ Receive immediate reward r

e« Observe the new state s

e Update the table entry for Q(s, a) as follows:

O(s,a) «r+ y max O, d)

® () learning algorithm assuming deterministic rewards and actions. The discount factor
y may be any constant such that 0 <y < 1
e () to refer to the learner's estimate, or hypothesis, of the actual Q function

8.a) Explain Bayesian belief networks with an example.
¢ The naive Bayes classifier makes significant use of the assumption that the values of the
attributes a, . . .a, are conditionally independent given the target value v.

e This assumption dramatically reduces the complexity of learning the target function

A Bayesian belief network describes the probability distribution governing a set of varnables
by specifying a set of conditional independence assumptions along with a set of conditional
probabilities

Bayesian belief networks allow stating conditional independence assumptions that apply to
subsets of the varnables



A Bayesian belief network represents the joint probability distribution for a set of variables.
Bayesian networks (BN) are represented by directed acyclic graphs.

5B 5-B -5B -5-8
c 04 01 08 02
= 0s 098 02 0.8

Campfire

The Bayesian network in above figure represents the joint probability distribution over the
boolean variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup

A Bayesian network (BN) represents the joint probability distribution by specifying a set of
conditional independence assumptions
* BN represented by a directed acyclic graph, together with sets of local conditional
probabilities
* Each variable in the joint space is represented by a node in the Bayesian network
# The network arcs represent the assertion that the variable is conditionally independent
of its non-descendants in the network given its immediate predecessors in the network.
*» A conditional probability table (CPT) 1s given for each wariable, describing the
probability distribution for that variable given the values of 1ts immediate predecessors

The joint probability for any desired assignment of values (y1, . . . , ya) to the tuple of network
variables (Y1 . . . Ym) can be computed by the formula
n
P(y1,...,ya) = [ [ PGilParents(Y)))
i=l1

Where, Parents(Y;) denotes the set of immediate predecessors of Y; in the network.

8.b) Define the following terms with respect to K- Nearest Neighbor

iv. Regression
V. Residual
Vi. Kernel function

s Regression means approximating a real-valved target function.
o Residual is the error f(x) - f(x) in approximating the target function,
e Kernel function is the function of distance that is used to determine the

weight of each training example. In other words, the kernel function is the
function X such that w; = K{d(x;, x4)).



