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1. Explain Naive Bayes Classifier and Bayesian belief Networks.

NAIVE BAYESCLASSIFIER
The naive Bayes classifier applies to learning tasks where each instance x is described
by a conjunction of attribute values and where the target function f (x) can take on any
value from some finite set V.

A set of training examples of the target function is provided, and a new instance is
presented, described by the tuple of attribute values (ai, az.. .am).

- The learner is asked to predict the target value, or classification, for this new instance.
The Bayesian approach to classifying the new instance is to assign the most probable target
value, Vmap, given the attribute values (al, a2.. .am) that describe the instance

Umap = argmax P(vjlag, az...an)
eV
Use Bayes theorem to rewrite this expression as

Plai,az...a.|v;)P(v;)

Uy ap = dargmax

eV P(ay, a3 .. .a,)
= argmax P(ai,az...a,|v;) P(v;) cqu (1)
yeV

The naive Bayes classifier is based on the assumption that the attribute values are
conditionally independent given the target value. Means, the assumption is that given
the target value of the instance, the probability of observing the conjunction (ai, a2..
.am), 1s just the product of the probabilities for the individual attributes:

P(ay,az...a,|v;)) = []; Plailv))

Substituting this into Equation (1),
Naive Bayes classifier:

Vg = argmax P(v;) 1—[ I(a;
vicV

Vi) equ (2)
1
Where, VnB denotes the target value output by the naive Bayes classifier

BAYESIAN BELIEF NETWORKS

The naive Bayes classifier makes significant use of the assumption that the values of
the attributes a1 . . .an are conditionally independent given the target value v.

This assumption dramatically reduces the complexity of learning the target function
A Bayesian belief network describes the probability distribution governing a set of variables
by specifying a set of conditional independence assumptions along with a set of conditional
probabilities
Bayesian belief networks allow stating conditional independence assumptions that apply to
subsets of the variables



Representation
A Bayesian belief network represents the joint probability distribution for a set of variables.
Bayesian networks (BN) are represented by directed acyclic graphs.
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The Bayesian network in above figure represents the joint probability distribution over the
boolean variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup
A Bayesian network (BN) represents the joint probability distribution by specifying a set of
conditional independence assumptions
BN represented by a directed acyclic graph, together with sets of local conditional
probabilities

Each variable in the joint space is represented by a node in the Bayesian network

The network arcs represent the assertion that the variable is conditionally independent
of its non-descendants in the network given its immediate predecessors in the network.

A conditional probability table (CPT) is given for each variable, describing the
probability distribution for that variable given the values of its immediate predecessors

The joint probability for any desired assignment of values (y1, . . ., yn) to the tuple of network
variables (Y1... Ym) can be computed by the formula
n
P(31,--,3m) = [ | POl Parents(¥)
i=1

Where, Parents(Yi) denotes the set of immediate predecessors of Yi in the network.

Example:
Consider the node Campfire. The network nodes and arcs represent the assertion that

Campfire is conditionally independent of its non-descendants Lightning and Thunder, given
its immediate parents Storm and BusTourGroup.
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This means that once we know the value of the variables Storm and BusTourGroup, the

variables Lightning and Thunder provide no additional information about Campfire The

conditional probability table associated with the variable Campfire. The assertion is
P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4




2(a) Provethat how maximum likelihood (Bayesian learning) can be used in any learning
algorithmsthat are used to minimize the squared error between the actual output hypothesis
and predicted output hypothesis.

Solution:

A straightforward Bayesian analysis will show that under certain assumptions any learning
algorithm that minimizes the squared error between the output hypothesis predictions and the
training data will output a maximum likelihood (ML) hypothesis

The problem faced by L is to learn an unknown target function f : X - R

A set of m training examples is provided, where the target value of each example is
corrupted by random noise drawn according to a Normal probability distribution with
zero mean (di = f(xi) + ei)
Each training example is a pair of the form (xi ,di ) where di=f (xi ) + ei .

— Here {(xi) is the noise-free value of the target function and ei is a random

variable representing the noise.

— It is assumed that the values of the ei are drawn independently and that they are

distributed according to a Normal distribution with zero mean.

The task of the learner is to output a maximum likelihood hypothesis or a MAP
hypothesis assuming all hypotheses are equally probable a priori.

Using the definition of hmL we have
harr, = argmaax p(1D|h)
holl
Assuming training examples are mutually independent given h, we can write P(DJh) as the

product of the various (dih)
7

hyr = argmazx I | p(d;|h)
hel
Given the noise ei obeys a Normal distribution with zero mean and unknown variance o2
, each di must also obey a Normal distribution around the true target value f(xi). Because we
are writing the expression for P(D|h), we assume h is the correct description of f.
Hence, p = f(xi) = h(xi)
m
1 L(dn)?

hy — argmax 2 o
heH 17 Vero®
Tt _I _I
harr = argmax In —— — - (dy — h-(:r,,}f
heH 2 V2ng2 207

Maximize the less complicated logarithm, which is justified because of the monotonicity of

function p
L

J_ f ~ TR
harr, = argmin Z ——(d; — h(z:))?

- 202
heH =



The first term in this expression is a constant independent of h, and can therefore be
discarded, yielding

M
I f f 2
harr = argmax E ———(di — h(x;))
Jr-F.l ’-_r—: H - 1 .-u{-r
Maximizing this negative quantity is equivalent to minimizing the corresponding positive
quantity

Finally, discard constants that are indre_%)endent of h.
T
. A2
harr = argmin g (di — h{x;))”
hC H

=1
Thus, above equation shows that the maximum likelihood hypothesis hmt is the one that

minimizes the sum of the squared errors between the observed training values di and the
hypothesis predictions h(xi)

2(b) Explain the features of Bayesian lear ning methods and difficulties?

Solution:

Features of Bayesian L earning Methods
1. Each observed training example can incrementally decrease or increase the estimated
probability that a hypothesisis correct. This provides a more flexible approach to learning
than algorithms that completely eliminate a hypothesisif it isfound to be inconsistent with
any single example

2. Prior knowledge can be combined with observed data to determine the final probability of a

hypothesis. In Bayesian learning, prior knowledge is provided by asserting (1) aprior
probability for each candidate hypothesis, and (2) a probability distribution over observed
data for each possible hypothesis.

3. Bayesian methods can accommodate hypotheses that make probabilistic predictions

4. New instances can be classified by combining the predictions of multiple hypotheses,
weighted by their probabilities.

Practical difficulty in applying Bayesian methods

1. One practical difficulty in applying Bayesian methods is that they typically require initial
knowledge of many probabilities. When these probabilities are not known in advance they are
often estimated based on background knowledge, previously available data, and assumptions

about the form of the underlying distributions.

2. A second practical difficulty is the significant computational cost required to determine the
Bayes optimal hypothesis in the general case. In certain specialized situations, this

computational cost can be significantly reduced.

3(a) Classify the following novel instance using Naive Bayes Classifier

<Outlook=sunny, Temperature=cool, Humidity=high, Wind=strong> referring to training data

in thebelow Table.



Dy futlonk Temperatare  Huwidiiy Wind Flay Leanis

= e E=

) Sunmye Hin. High Wenk hyln
nz Sunny Hot High Strong Ne
3 {hwercast Hox High Weak Yes
4 Rain Mild High Wik Tom
L3z Rain Cool Mormal — Weak Ve
Bl Raiii Cool MWormal — Strong Mo
D7 COvercast ool Normal  Strong Yes
L Sunmy Mild High Wesak Mo
L Sunmy Cool Momal  Weak Yes
B0 Rain Mild Mozl Wk Y
Gty Sunny Mild Normal — Sirong Yes
D12 Overcasc Mild High Stong Yes
D13 Owvercast Hot Mormal Weak Yes
Cig Fain Mild High Strong Ne

Our task is to predict the target value (yes or no) of the target concept
PlayTennis for this new instance

Vg = argmax P(v)) n P(ai|vy)

V| O {ycs o) :

Ve = argmax ’(vj) piOuwlook—sunmy|v; ) P(Temperature—cool|v; )
VjE{yes qof P(Humidity—high|v; ) P(Wind—strang|v; )

The probabilities of the different target values can easily be estimated based on
their frequencies over the 14 training examples

P(PlayTennis = yes) = 9/14 = 0.64
P(PlayTennis = no) = 5/14 = 0.36

Similarly, estimate the conditional probabilities. For example, those for Wind = strong
P(Wind = strong | PlayTennis = yes) = 3/9 = 0.33
P(Wind = strong | PlayTennis = no) = 3/5 = 0.60

Calculate VnB according to Equation (1)
P(yes) P(sunny|yes) P(cool|yes) P(high|yes) P(strong|yes) = .0053
P(no) P(sunny|lno) P(coollno) P(high|no) P(stronglno)y = 0206

Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this

new instance, based on the probability estimates learned from the training data.

By normalizing the above quantities to sum to one, calculate the conditional probability
that the target value is no, given the observed attribute values

0206
(.0206 + 0053)

=193

3(b) Explain the EM Algorithm in detail.

Step 1: Calculate the expected value Elz;] of each hidden variable z;, assuming
the current hypothesis & = {{1, 12} holds.

Step 2: Calculate a new maximum likelihood hypothesis #' = (). p5), assuming
the value taken on by each hidden variable = 1% its expected value El=:;:



Let us examine how both of these steps can be implemented in practice.
Step 1 must calculate the expected value of each z;. This E[z;] is just the prob-
ability that instance x; was generated by the jth Normal distribution

plx = xi|p = u;j)

Elz;] =
J 2321 plx = Xi|lt = fLy)

e'—ﬁ*flr—ﬁj 32

Ez " f_ i‘!’(zl = fn '2
=

Thus the first step is implemented by substituting the current values (u,, u;) and
the observed x; into the above expression.

In the second step we use the E[z;] calculated during Step 1 to derive a
new maximum likelihood hypothesis &' = (u/, u3).
maximum likelihood hypothesis in this case is given by

. Liz Elzy] xi
b Ty Ela])

4(a) Write Bayestheorem. What isthe relationship between Bayes theorem and the problem of
concept learning

BAYES THEOREM
Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior
probability, the probabilities of observing various data given the hypothesis, and the observed
data itself.
Notations
P(h) prior probability of h, reflects any background knowledge about the chance that h is
correct
P(D) prior probability of D, probability that D will be observed

P(D|h) probability of observing D given a world in which h holds

P(h|D) posterior probability of h, reflects confidence that h holds after D has been
observed

Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to
calculate the posterior probability P(h|D), from the prior probability P(h), together with P(D) and
P(DJh).
Bayes lheorem:
v AR T LR
Pini = 2 Am Ak
| P(D)

P(h|D) increases with P(h) and with P(D|h) according to Bayes theorem.




P(h|D) decreases as P(D) increases, because the more probable it is that D will be
observed independent of h, the less evidence D provides in support of h.
What is the relationship between Bayes theorem and the problem of concept learning?
Since Bayes theorem provides a principled way to calculate the posterior probability of each
hypothesis given the training data, and can use it as the basis for a straightforward learning
algorithm that calculates the probability for each possible hypothesis, then outputs the most
probable.
Brute-Force Bayes Concept Learning
Consider the concept learning problem
Assume the learner considers some finite hypothesis space H defined over the instance
space X, in which the task is to learn sometarget concept ¢c: X - {0,1}.

Learner is given some sequence of training examples ((x1, d1) . . . (xm, dm)) where xi is
some instance from X and where di is the target value of xi (i.e., di = c(xi)).

The sequence of target values are written as D = (d1 . . . dm).
We can design a straightforward concept learning algorithm to output the maximum a posteriori
hypothesis, based on Bayes theorem, as follows:

4(b) Explain Maximum Likelihood Hypothesisfor predicting probabilities

MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING PROBABILITIES

Consider the setting in which we wish to learn a nondeterministic (probabilistic)
function f: X - {0, 1}, which has two discrete output values.

We want a function approximator whose output is the probability that f(x) = 1. In other
words, learn thetarget functionf *: X - [0, 1] such that f “ (x) = P(f(x) = 1)

How can we learn [~ using a neural network?
Use of brute force way would be to first collect the observed frequencies of 1's and 0's
for each possible value of x and to then train the neural network to output the target
frequency for each x.

What criterion should we optimize in order to find a maximum likelihood hypothesis for f' in
this setting?
- First obtain an expression for P(D}h)

Assume the training data D is of the form D = {(x1, d1) . . . (Xm, dm)}, where di is the
observed 0 or 1 value for f (xi).

Both xi and di as random variables, and assuming that each training example is drawn
independently, we can write P(D|h) as

P(D | h) =[] Plxid; | h) equ (1)

Applying the product rule

m

P(D| h) = HF'{G'; | b, xi ) P(x;) equ (2)



The probability P(dilh, xi)

h{x.-} if da’ =1
P(dih, xi) = equ (3)

{1 = h{x;)} il ﬂ'.' = D

Re-express it in a more mathematically manipulable form, as

P(dith, x;) = R(x)* (1 — h(x;))' ™% equ (4)

Equation (4) to substitute for P(di |h, xi) in Equation (5) to obtain

P(DIk) = [ [A(x)* (1 = B(x))' ™% P(x;) 4o 5)

i=]

We write an expression for the maximum likelihood hypothesis

hyr = argmax | | A(x)® (1 - k(x))' ™% P(x))
heH ;_]

The last term is a constant independent of h, so it can be dropped

hyr = argmax [ | AGa)* (1 - hx))' e ()

heHd o)

It easier to work with the log of the likelihood, yielding

har =3I§maIZd,' Inh(x)+ (1 —d)In(1l — A(x:)) a1 (7]
€l -

Equation (7) describes the quantity that must be maximized in order to obtain the maximum
likelihood hypothesis in our current problem setting

5(a) Explain locally weighted linear regression



» a note on terminology:
& Regression means approximating a real-valued target function
& Residualis the error () — [(x) in approximating the target
function

& Hernel function is the function of distance that is used to
cdetermine the weight of each training example. In other words,
the kernel function is the function & such that 1, = R (d(+,. 7))

& nearest neighbor approaches can ba thought of as approximating
the largel fluncltion al the single query poinl o,

# [ocally weighted regression is a generalization to this approach,
because it constructs an explicit approximation of  over a local
region surrounding =,

# target function is approximated using a linear function

T(x) = wy + wyay (=) + ... - wya,(x)

"

methods like gradient descent can be used (o calculate the

coefflicients wq. wy.....w,, o minimize the error in fitting such linsar
functions

ANNMS require a global approximation to the target function
here, just a local approximation s needed

LI

I

the error function has to be redefined




5(b) What isinstance based lear ning? Explain its advantages and drawbacks.

# all learning methods presented so far construct a general explicit
description of the target function when examples are provided

£  Instance-based learning:
& examples are simply stored
& generalizing is postponed until a new instance must be
classified

& In order to assign a target function value, its relationship to the
previously stored examples is examined

» sometimes referred to as lazy learning

# advaniages:
# Instead of estimating for the whole instance space, lccal
approximations to the target function are possible
» especially if target function is complex but still decomposable

& disadvantages:
#» classificaton COIStE are high
afficient technigues for indexing axamples are important to reduce
computationa’ effort
» typically all attributes are considered when attempting to
retrieve similar training examples
if the concept depends only on a faw attributes, the truly most similar

instances may ba far away

6. Explain sampleerror, trueerror, expected value, confidence intervals and Q-lear ning function
Sampleerror : The sample error (denoted errorg(h)) of hypothesis h with respect to target function
f and datasample Sis:
errorg(h)= 1/n Sy sd(f(x),h(x))

where n is the number of examples in S, and the quantity d(f(x),h(x)) is 1 if f(x) ¥ h(x),
and O, otherwise.

TrueError: Thetrue error (denoted errorp(h)) of hypothesis h with respect to target function f and
distribution D, is the probability that h will misclassify an instance drawn at random according to D.

errorp(h)= Pryg p[f(X) 1 h(X)]
Confidencelntervals:

In statistics, a confidence interval (Cl) is atype of interval estimate, computed from the statistics of
the observed data, that might contain the true value of an unknown popul ation parameter.



Confidence intervals consist of a range of potential values of the unknown population parameter.
However, the interval computed from a particular sample does not necessarily include the true value
of the parameter.

The confidence level is designated prior to examining the data. Most commonly, the 95%
confidence level is used. However, other confidence levels can be used, for example, 90% and 99%.



A 95% confidence level does not mean that for a given realized interval thereis a 95% probability that
the population parameter lies within the interval (i.e., a 95% probability that the interval covers the
population parameter).

The general expression for approximate N% confidence intervals for errorp(h) is:
errorg(n) = zv CGerrorgh)(1-errorg(h))/n

This approximation is quite good when n

errorg(h)(1- errorg(h)) 2 5

Q-L earning Function:

& in many problems, it is impossible to predict in advance the exact
outcome of applying an arbitrary action to an arbitrary state

# the @ function provides a solution to this problem
s (s, a)indicates the maximum discounted reward that can be
achieved starting from < and applying action « first

(s, a) =r(s,a)+~V*(d(s,.a))

= 7w (%) = argmaxct (s, a)

7. Explain the K-near est neighbor algorithm for estimating the discr ete valued function f-> Rn-V
with pseudo code



» most basic instanca-based method

B assomplion:
& Instances carrespond to a point in a n-dimensional space "

» thus. nearesl neighbors are defined in terms of the standard
Euclidean Distance

r==1

dia,a;) = \J L:{'”r':-"'al —adr;))?

where an instance «x is described by < a,(x), az{@), ...,anl2) >

& larget function may be either discrete-valued or real-valued

Training algorithm:
» For cach trmning example (x, f(x)), add the example to the list training_examples

Classification algorithm:
» Given a query instance x; to be classified,
e Let x) ... x; denote the k instances from training_examples thal are nearest 10 x;
e Retum

k
fxg) « argmax ) 8(v. £(x)

eV i

where é(a,b) = | if @ = b and where §{a, b) = 0 otherwise.

TABLE B.1
The k-NEaAREST NEIGHBOR algorithm for approximating a discrete-valued function f : R" = V.

Pseudo Code:

1. Loadthedata
2. Initialize the value of k
3. For getting the predicted class, iterate from 1 to total number of training data points
1. Calculate the distance between test data and each row of training data. Here we will use
Euclidean distance as our distance metric since it’s the most popular method. The other
metrics that can be used are Chebyshev, cosine, etc.
Sort the calculated distances in ascending order based on distance values
Get top k rows from the sorted array
Get the most frequent class of these rows
Return the predicted class

agbrwbd

8(a) Explain CADET system using code based reasoning



= |nstance-based methods such as k-NN, locally weighted
regression share threzs key properties.

1. They are lazy learning methods

They defer the cecision of how to gerneralize beyond the
training data until a new query instance is observed.

2. They classify new gquery instances by analyzing similar
instances while ignoring instances that are very different
from the query.

3. Third, they representinstances as real-valued points in
an n-dimensional Euclidean space.

= Case-based reasoning (CBR) is a learning paradigm based on
the first twe of these principles, but not the third.

= |n CBR, instances are typically represented using more rich
symbolic descriptions, and the methods used to retrieve
similar instances are correspcndingly more elaborate.

* CBR has been applied to problems such as conceptual
design of mechanical devices based on a stored library of
previous designs (Sycara et al. 1992),

* reasoning about new legal cases based on previous rulings
(Ashley 1990),

* solving planning and scheduling problems by reusing and
combining portions of previous solutions to similar
problems (Veloso 1992).

= The CADET system (Sycara et al. 1992)

* employs case based reasoning to assist in the conceptual
design of simple mechanical devices such as water faucets.

* |t uses a library containing approximately 75 previous
designs and

» design fragments to suggest ccnceptual designs to meet
the specifications of new design prcbhlems.

8(b) Explain Q-Learning algorithm



For each s, a initialize the table entry Q(s,a) to zero
Oberserve the current state s

Do forever:

» Select an action a« and execute it
Receive immediate reward r

Observe new state s’

L I B

Update each table entry for ((s.a) as follows
Q{n a) — r—+ *j-'m.u.r.-u;{){s'. a)
» s-— ¢

= using this algorithm the agent’s estimate ¢) converges to the actual @, provided the
system can be modeled as a deterministic Markov decision process, r is bounded, and
actions are chosen so that every state-action pair is visited infinitely often

T acmera 11 Tasfarsain

R% o % R
— - —

righe

Initial state: 5 ] Next state: S,

f}{:ﬂ s Qright) *— T + 7 - max C_?{.-.-:*z.u"}
o
— 0+ 0.9 - max{66,81,100}
— 90

# each time the agent moves, (2 Learning propagates ¢ estimates
backwards from the new state to the old




