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#
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1
 Naïve Bayes Classifier explanation
 Bayesian belief networks explanation

5M
5M 10M 10 M

2a)  Proof showing maximum likelihood function 6M 6M

10M
b)

 Features of Bayesian learning
 Difficulties of Bayesian learning

2M

2M 4 M

3 (a)

 Finding Vnb
 Calculating the conditional probabilities
 Predicting the result

2M
2M
1M

5M

10 M(b)  EM algorithm explanation
5M 5 M

4

a)
 Defining Bayes theorem
 Explaining the relationship between concept

learning and bayes theorem

1M

4M
5 M

10 M

b)
 Explaining ML hypothesis 5 M

5 M

5

a)
 Explaining locally weighted regression 5M

5 M

10M

b)

 Instance based learning
 Advantages
 Disadvantages

1M

2M

2M

5M

6)

 Explaining sample error
 Explaining true error
 Confidence intervals
 Q-Learning function

2M

2M

3M

3M

10M 10M

7)
 Explaining KNN algorithm for discrete values
 Pseudo Code

6M
4M 10M 10M

8)a)  Explaining CADET system 6M 6M
10M

b)  Explaining Q-Learning algorithm 4M 4M
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1. Explain Naive Bayes Classifier and Bayesian belief Networks.

NAIVE BAYES CLASSIFIER
 The naive Bayes classifier applies to learning tasks where each instance x is described

by a conjunction of attribute values and where the target function f (x) can take on any
value from some finite set V.

 A set of training examples of the target function is provided, and a new instance is
presented, described by the tuple of attribute values (al, a2.. .am).

 The learner is asked to predict the target value, or classification, for this new instance.
The Bayesian approach to classifying the new instance is to assign the most probable target
value, VMAP, given the attribute values (al, a2.. .am) that describe the instance

Use Bayes theorem to rewrite this expression as





 The naive Bayes classifier is based on the assumption that the attribute values are
conditionally independent given the target value. Means, the assumption is that given
the target value of the instance, the probability of observing the conjunction (al, a2..
.am), is just the product of the probabilities for the individual attributes:

Substituting this into Equation (1),
Naive Bayes classifier:

Where, VNB denotes the target value output by the naive Bayes classifier

BAYESIAN BELIEF NETWORKS

 The naive Bayes classifier makes significant use of the assumption that the values of
the attributes a1 . . .an are conditionally independent given the target value v.

 This assumption dramatically reduces the complexity of learning the target function
A Bayesian belief network describes the probability distribution governing a set of variables
by specifying a set of conditional independence assumptions along with a set of conditional
probabilities
Bayesian belief networks allow stating conditional independence assumptions that apply to
subsets of the variables



Representation
A Bayesian belief network represents the joint probability distribution for a set of variables.
Bayesian networks (BN) are represented by directed acyclic graphs.

The Bayesian network in above figure represents the joint probability distribution over the
boolean variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup
A Bayesian network (BN) represents the joint probability distribution by specifying a set of
conditional independence assumptions

 BN represented by a directed acyclic graph, together with sets of local conditional
probabilities

 Each variable in the joint space is represented by a node in the Bayesian network
 The network arcs represent the assertion that the variable is conditionally independent

of its non-descendants in the network given its immediate predecessors in the network.
 A conditional probability table (CPT) is given for each variable, describing the

probability distribution for that variable given the values of its immediate predecessors
The joint probability for any desired assignment of values (y1, . . . , yn) to the tuple of network
variables (Y1 . . . Ym) can be computed by the formula

Where, Parents(Yi) denotes the set of immediate predecessors of Yi in the network.

Example:
Consider the node Campfire. The network nodes and arcs represent the assertion that
Campfire is conditionally independent of its non-descendants Lightning and Thunder, given
its immediate parents Storm and BusTourGroup.

This means that once we know the value of the variables Storm and BusTourGroup, the
variables Lightning and Thunder provide no additional information about Campfire The
conditional probability table associated with the variable Campfire. The assertion is

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4



2(a) Prove that how maximum likelihood (Bayesian learning) can be used in any learning
algorithms that are used to minimize the squared error between the actual output hypothesis
and predicted output hypothesis.

Solution:

A straightforward Bayesian analysis will show that under certain assumptions any learning
algorithm that minimizes the squared error between the output hypothesis predictions and the
training data will output a maximum likelihood (ML) hypothesis

 The problem faced by L is to learn an unknown target function f : X → R
 A set of m training examples is provided, where the target value of each example is

corrupted by random noise drawn according to a Normal probability distribution with
zero mean (di = f(xi) + ei)

 Each training example is a pair of the form (xi ,di ) where di = f (xi ) + ei .
– Here f(xi) is the noise-free value of the target function and ei is a random
variablerepresenting the noise.
– It is assumed that the values of the ei are drawn independently and that they are

distributed according to a Normal distribution with zero mean.
 The task of the learner is to output a maximum likelihood hypothesis or a MAP

hypothesis assuming all hypotheses are equally probable a priori.

Using the definition of hML we have

Assuming training examples are mutually independent given h, we can write P(D|h) as the
product of the various (di|h)

Given the noise ei obeys a Normal distribution with zero mean and unknown variance σ2

, each di must also obey a Normal distribution around the true target value f(xi). Because we
are writing the expression for P(D|h), we assume h is the correct description of f.
Hence, µ = f(xi) = h(xi)

Maximize the less complicated logarithm, which is justified because of the monotonicity of
function p



The first term in this expression is a constant independent of h, and can therefore be
discarded, yielding

Maximizing this negative quantity is equivalent to minimizing the corresponding positive
quantity

Finally, discard constants that are independent of h.

Thus, above equation shows that the maximum likelihood hypothesis hML is the one that
minimizes the sum of the squared errors between the observed training values di and the
hypothesis predictions h(xi)

2(b) Explain the features of Bayesian learning methods and difficulties?

Solution:
Features of Bayesian Learning Methods

1. Each observed training example can incrementally decrease or increase the estimated
probability that a hypothesis is correct. This provides a more flexible approach to learning
than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with
any single example

2. Prior knowledge can be combined with observed data to determine the final probability of a
hypothesis. In Bayesian learning, prior knowledge is provided by asserting (1) a prior
probability for each candidate hypothesis, and (2) a probability distribution over observed
data for each possible hypothesis.
3. Bayesian methods can accommodate hypotheses that make probabilistic predictions

4. New instances can be classified by combining the predictions of multiple hypotheses,
weighted by their probabilities.

Practical difficulty in applying Bayesian methods
1. One practical difficulty in applying Bayesian methods is that they typically require initial

knowledge of many probabilities. When these probabilities are not known in advance they are
often estimated based on background knowledge, previously available data, and assumptions
about the form of the underlying distributions.

2. A second practical difficulty is the significant computational cost required to determine the
Bayes optimal hypothesis in the general case. In certain specialized situations, this
computational cost can be significantly reduced.

3(a) Classify the following  novel instance using Naive Bayes Classifier
<Outlook=sunny, Temperature=cool, Humidity=high, Wind=strong> referring to training data
in the below Table.



Solution:
 Our task is to predict the target value (yes or no) of the target concept

PlayTennis for this new instance


The probabilities of the different target values can easily be estimated based on
their frequencies over the 14 training examples

 P(P1ayTennis = yes) = 9/14 = 0.64
 P(P1ayTennis = no) = 5/14 = 0.36

Similarly, estimate the conditional probabilities. For example, those for Wind = strong
 P(Wind = strong | PlayTennis = yes) = 3/9 = 0.33
 P(Wind = strong | PlayTennis = no) = 3/5 = 0.60

Calculate VNB according to Equation (1)

Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this
new instance, based on the probability estimates learned from the training data.
By normalizing the above quantities to sum to one, calculate the conditional probability
that the target value is no, given the observed attribute values

3(b) Explain the EM Algorithm in detail.



4(a) Write Bayes theorem. What is the relationship between Bayes theorem and the problem  of
concept learning

BAYES THEOREM
Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior
probability, the probabilities of observing various data given the hypothesis, and the observed
data itself.
Notations

 P(h) prior probability of h, reflects any background knowledge about the chance that h is
correct

 P(D) prior probability of D, probability that D will be observed
 P(D|h) probability of observing D given a world in which h holds
 P(h|D) posterior probability of h, reflects confidence that h holds after D has been

observed
Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to
calculate the posterior probability P(h|D), from the prior probability P(h), together with P(D) and
P(D|h).


 P(h|D) increases with P(h) and with P(D|h) according to Bayes theorem.



 P(h|D) decreases as P(D) increases, because the more probable it is that D will be
observed independent of h, the less evidence D provides in support of h.

What is the relationship between Bayes theorem and the problem of concept learning?
Since Bayes theorem provides a principled way to calculate the posterior probability of each
hypothesis given the training data, and can use it as the basis for a straightforward learning
algorithm that calculates the probability for each possible hypothesis, then outputs the most
probable.
Brute-Force Bayes Concept Learning
Consider the concept learning problem

 Assume the learner considers some finite hypothesis space H defined over the instance
space X, in which the task is to learn some target concept c : X → {0,1}.

 Learner is given some sequence of training examples ((x1, d1) . . . (xm, dm)) where xi is
some instance from X and where di is the target value of xi (i.e., di = c(xi)).

 The sequence of target values are written as D = (d1 . . . dm).
We can design a straightforward concept learning algorithm to output the maximum a posteriori
hypothesis, based on Bayes theorem, as follows:

4(b) Explain Maximum Likelihood Hypothesis for predicting probabilities

MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING PROBABILITIES

 Consider the setting in which we wish to learn a nondeterministic (probabilistic)
function f : X → {0, 1}, which has two discrete output values.

 We want a function approximator whose output is the probability that f(x) = 1. In other
words, learn the target function f ` : X → [0, 1] such that f ` (x) = P(f(x) = 1)

How can we learn f ` using a neural network?
 Use of brute force way would be to first collect the observed frequencies of 1's and 0's

for each possible value of x and to then train the neural network to output the target
frequency for each x.


What criterion should we optimize in order to find a maximum likelihood hypothesis for f' in
this setting?

 First obtain an expression for P(D|h)
 Assume the training data D is of the form D = {(x1, d1) . . . (xm, dm)}, where di is the

observed 0 or 1 value for f (xi).
 Both xi and di as random variables, and assuming that each training example is drawn

independently, we can write P(D|h) as

Applying the product rule



The probability P(di|h, xi)

Re-express it in a more mathematically manipulable form, as

Equation (4) to substitute for P(di |h, xi) in Equation (5) to obtain

We write an expression for the maximum likelihood hypothesis

The last term is a constant independent of h, so it can be dropped

It easier to work with the log of the likelihood, yielding

Equation (7) describes the quantity that must be maximized in order to obtain the maximum
likelihood hypothesis in our current problem setting

5(a) Explain locally weighted linear regression





5(b) What is instance based learning? Explain its advantages and drawbacks.

6. Explain sample error, true error, expected value, confidence intervals and Q-learning function

Sample error : The sample error (denoted errors(h)) of hypothesis h with respect to target function
f and data sample S is:

errors(h)= 1/n xS (f(x),h(x))

where n is the number of examples in S, and the quantity (f(x),h(x)) is 1 if f(x)  h(x),
and 0, otherwise.

True Error: The true error (denoted errorD(h)) of hypothesis h with respect to target function f and
distribution D, is the probability that h will misclassify an instance drawn at random according to D.

errorD(h)= PrxD [f(x)  h(x)]

Confidence Intervals :

In statistics, a confidence interval (CI) is a type of interval estimate, computed from the statistics of
the observed data, that might contain the true value of an unknown population parameter.



Confidence intervals consist of a range of potential values of the unknown population parameter.
However, the interval computed from a particular sample does not necessarily include the true value
of the parameter.

The confidence level is designated prior to examining the data. Most commonly, the 95%
confidence level is used. However, other confidence levels can be used, for example, 90% and 99%.



A 95% confidence level does not mean that for a given realized interval there is a 95% probability that
the population parameter lies within the interval (i.e., a 95% probability that the interval covers the
population parameter).

The general expression for approximate N% confidence intervals for errorD(h) is:

errorS(h)  zN errorS(h)(1-errorS(h))/n

This approximation is quite good when n

errorS(h)(1 - errorS(h))  5

Q-Learning Function:

7. Explain the K-nearest neighbor algorithm for estimating the discrete valued function f-> Rn-V
with pseudo code



Pseudo Code :

1. Load the data
2. Initialize the value of k
3. For getting the predicted class, iterate from 1 to total number of training data points

1. Calculate the distance between test data and each row of training data. Here we will use
Euclidean distance as our distance metric since it’s the most popular method. The other
metrics that can be used are Chebyshev, cosine, etc.

2. Sort the calculated distances in ascending order based on distance values
3. Get top k rows from the sorted array
4. Get the most frequent class of these rows
5. Return the predicted class

8(a) Explain CADET system using code based reasoning



8(b) Explain Q-Learning algorithm




